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Abstract—Since automatic algorithm configuration methods
have been very effective, recently there is increasing research
interest in utilizing them for automatic solver construction,
resulting in several notable approaches. For these approaches a
basic assumption is that the given training set could sufficiently
represent the target use cases, such that the constructed solvers
can generalize well. However such assumption does not always
hold in practice since in some cases we might only have
scarce and biased training data. This paper studies effective
construction approaches for parallel algorithm portfolios that
are less affected in these cases. Unlike previous approaches, the
proposed approach simultaneously considers instance generation
and portfolio construction in an adversarial process, in which the
aim of the former is to generate instances that are challenging
for the current portfolio, while the aim of the latter is to find
new component solver for the portfolio to better solve the newly
generated instances. Applied to two widely studied problem
domains, i.e., the boolean satisfiability problems (SAT) and
the traveling salesman problems (TSP), the proposed approach
identified parallel portfolios with much better generalization than
the ones generated by existing approaches when the training data
was scarce and biased. Moreover, it was further demonstrated
that the generated portfolios could even rival the state-of-the-art
manually designed parallel solvers.

Index Terms—parameter tuning, automatic portfolio construc-
tion, parallel algorithm portfolio, generative adversarial ap-
proach

I. INTRODUCTION

MANY high-performance algorithms for solving com-
putationally hard problems, ranging from exact meth-

ods such as mixed integer programming solvers to heuristic
methods such as local search and metaheuristics, involve a
large number of free parameters that need to be carefully
tuned to achieve their best performance [1]–[4]. In many
cases, finding performance-optimizing parameter settings is
performed manually in an ad-hoc way. However, the manually-
tuning approach has two main disadvantages [5]–[8]: (i) it
requires considerable human effort; (ii) it is often limited
to the exploration of few parameter settings, thus leading
to a performance that is far from the optimal. As a result,
there have been a lot of attempts on automated parameter
tuning (see [6] for a comprehensive review), which is usually
referred to as automatic algorithm configuration (AAC) [9].
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Here a configuration of a parameterized algorithm refers to
a complete setting of the parameters of the algorithm, such
that the algorithm’s behavior on a given problem instance is
completely specified (up to randomization of the algorithm
itself). In the last few years, with several high-performance
algorithm configurators (i.e., AAC methods) such as ParamILS
[6], GGA [10], irace [8] and SMAC [11] being proposed, AAC
has become very effective.

As a consequence, recently there is increasing research
interest in utilizing these methods to automatically construct
effective solvers for a given application. The key idea is to
parameterize many aspects of the algorithms and thus come
up with a large space of algorithms as the configuration
space, from which effective algorithm configurators are used to
identify high-performance algorithms. Unlike manual solver-
designing paradigm which usually relies on considerable
effort by human experts, the automatic solver construction
approaches involve much less human effort and instead usually
need to consume large budgets of computational time for
configuration. This is acceptable (and even appealing) since
the available computing power has been rapidly becoming
much cheaper than before 1. Indeed, such approaches have
been demonstrated to be both practical and effective in cases of
constructing sequential solvers [12], [13], sequential portfolios
[14]–[16] (i.e., algorithm portfolios with selectors/scheduling),
and parallel portfolios [17], [18].

Generally all these approaches require that a training set
(i.e., a set of problem instances of the problem domain of
interest) is available for constructing the solvers, particularly
to evaluate the solvers in the construction process. Moreover,
for these approaches an indispensable assumption is that the
training set is a good representative of the target use cases
[19], such that the “trained” solvers can generalize well to
the instances out of the training set. In practice given a
specific application, it could usually be expected that some
data, i.e., the instances that have been encountered for this
application before, are available as the training data. However,
it is noted in at least two cases such a training set might
not be sufficiently representative, which could have a major
impact on the applicability of the constructed solvers. First,
only a limited number of instances are accumulated and thus
can hardly cover the whole possible target cases. Second, the
accumulated instances are outdated and could not reflect the
properties of current cases well. Actually the above two cases
are not rare and have been discussed in different areas in the

1According to https://en.wikipedia.org/wiki/FLOPS#Hardware costs, the
unit cost of computing power falls by an order of magnitude roughly every
four years nowadays.
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literature. For examples, it has been reported that in combina-
torial optimization some commonly used benchmark instances
are not necessarily challenging [20], narrowly defined [21],
and distinct from real-world instances [22]; in research areas
closely related to real-world applications such as logistics,
there are also concerns that the instances proposed decades
ago already could not represent the real-world cases of today
due to the ever-growing of big cities [23], [24].

Intuitively, to handle this issue, generating some additional
instances appears to be an alternative. However, it is also non-
trivial to generate good training data in practice. Recall that
the ultimate goal for having a representative training set is to
achieve good generalization of the constructed solvers. Thus
the term “representative training set” depends on the specific
solvers considered, while the latter is to be constructed based
on the former. In other words, it is very difficult to obtain a
concrete definition of representativeness in advance, which is
crucial for evaluating a given training set and thereby generat-
ing a representative one. This difficulty could be alleviated
by allowing some redundancy in the training set, since in
the extreme case, one could obtain perfect generalization if
all possible target instances are included in the training set.
However this could lead to overwhelming cost for getting the
training set as well as for constructing the solvers.

This paper studies effective construction approaches for
parallel portfolios that are less affected by non-representative
training data. The term “parallel portfolio” [25], [26] refers
to a portfolio/set of solvers that are run independently in
parallel when solving a problem instance (see Section III-A).
As a form of solvers, parallel portfolios have several important
advantages. First, exploiting parallelism has become very
important in designing efficient solvers for computationally
hard problems, considering the great development and the
wide application of parallel computing architectures [27] (e.g.,
multi-core CPUs) over the last decade. Parallel portfolios
employ parallel solution strategies, and thus could easily make
effective use of modern hardware. Second, utilizing several
different solvers (as in parallel portfolios) is a simple yet
effective strategy for solving computationally hard problems.
Such idea has also been realized in the forms of sequential
portfolios [28], [29] which try to select the best solvers for
solving a problem instance, and adaptive solvers such as
adaptive parameter control [30]–[33], reactive search [34],
[35] and hyper-heuristics [36]–[38] which seek to dynamically
determine the best solver setting while solving a problem
instance. In principle, all these methods need to involve some
mechanisms (e.g., selection or scheduling) to appropriately
allocate computational resource to different solvers, while
parallel portfolios do not necessarily require any extra resource
allocation since each solver is simply assigned with the same
amount of resource. Third, a parallel portfolio could be easily
converted to a sequential portfolio by using algorithm selection
methods [39] to build selectors on the solvers in the port-
folio, which means the portfolios generated by construction
approaches (e.g., the approach proposed in this paper) could
be further used for constructing sequential portfolios.

In this paper we propose a novel approach called Gener-
ative Adversarial Solver Trainer (GAST) for the automatic

construction of parallel portfolios. Unlike existing construc-
tion approaches, GAST would generate additional training
instances and construct a parallel portfolio with the dynam-
ically changing training set. More specifically, GAST puts
instance generation and portfolio construction in an adversarial
game. The instance generation aims to generate hard problem
instances that could not be solved well by the current portfolio;
while the portfolio construction aims to find new component
solver for the portfolio to better solve these challenging
instances. Competition in this game drives the portfolio to
satisfactorily solve more and more problem instances, leading
to a better and better generalization performance. To the best
of our knowledge, this is the first work that simultaneously
considers solver construction and instance generation. In the
experiments, in comparison with previous approaches, GAST
consistently built parallel portfolios with much better gen-
eralization across different experimental scenarios, and the
portfolios could even achieve the performance level of parallel
solvers designed by human experts.

The remainder of this paper is organized as follows. Sec-
tion II reviews previous related work. In Section III first the
problem of parallel portfolio construction is described, and
then the general framework of GAST is presented. After that,
in Section IV GAST is further instantiated for TSP and SAT.
In Section V, the advantages of GAST will be demonstrated
through comparison against other portfolio construction meth-
ods in data-scarce and data-biased scenarios. In this section the
portfolios generated by GAST would also be compared against
state-of-the-art manually designed parallel solvers. Finally,
conclusions and future work will be drawn in Section VI.

II. RELATED WORK

A. Automatic Solver Construction

Investigations on automatic solver construction were ini-
tiated by the attempts on automatic algorithm configuration
(AAC) [9]. A number of algorithm configuraotrs (i.e., AAC
methods), ParamILS [6], GGA [10], irace [8] and SMAC [11],
have been developed in the past decade. All these methods
can be viewed as sharing a common iterative search frame-
work, i.e., candidate configurations are generated and tested
iteratively. The biggest difference between them lies in the
ways of generating candidate configurations. ParamILS and
GGA utilize direct search methods, i.e., an iterated local search
algorithm and a gender-based genetic algorithm respectively,
to search the configuration spaces, while SMAC and irace both
rely on built meta models to guide the sampling of the configu-
ration spaces. With the effective algorithm configurators, there
were later attempts on automatically constructing sequential
solvers. One prominent example is SATenstein [12], in which
ParamILS was used to construct an effective solver for SAT
based on a highly parameterized solver framework. Another
example is AutoMOEAs [13], in which high-performance
multi-objective Evolutionary Algorithms (MOEAs) for the
multi-objective permutation flow-shop problems were built
by irace with a configuration space defined on a highly
parameterized MOEA framework.
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By considering more complicated structures of solvers,
research evolved into the realm of automatic portfolio con-
struction (APC), i.e., the targeted object is no longer a single
solver, but is a portfolio of solvers that are chosen from
a configuration space. Such a setting essentially means the
search space considered by APC is generally much larger than
that considered in the case of constructing sequential solvers,
providing more degree of freedom on the resultant solvers
and hopefully leading to better performance. According to the
ways of using the resultant portfolios to solve a new problem
instance, APC was further developed along several directions.
Cedalion [16] is a notable approach for constructing portfolios
with scheduling for the planning problem, which runs its com-
ponent planners sequentially with pre-allocated time budgets.
For portfolios with selectors which select a single best solver
from its component solvers to solve a given problem instance,
there are two representative approaches dubbed Hydra [14] and
ISAC [15]. Hydra constructs a portfolio iteratively by finding
a configuration in each iteration that maximizes marginal
contribution to the current portfolio, while ISAC clusters
the training instances based on features and independently
runs an algorithm configurator on each cluster. The basic
ideas of Hydra and ISAC were later adapted to be used
in constructing parallel portfolios, thus resulting in two new
approaches PARHYDRA and CLUSTERING [17]. Another
key approach for constructing parallel portfolios is PCIT
[18], which also adopts an instance grouping strategy like
CLUSTERING but will adjust the grouping by transferring
instances between subsets in the construction process. Note
that how to evaluate candidate portfolios in the construction
process depends on the ways of using the resultant portfolios;
therefore the latter should be taken into account in the design
of an APC approach.

As above mentioned, currently all investigations on auto-
matic solver construction require that a training set is given,
and it is assumed that the training set is a (representative) part
of the target use cases. Hence, it is non-surprising that most
of the above approaches were justified on well-investigated
computationally hard problems, such as the planning problems
[16], SAT [12], [14], [15], [17], [18], and TSP [18], since for
these problems there are quite a few benchmark suites. For
these approaches the training set and the test set for empirical
studies were usually obtained by randomly and evenly splitting
an existing benchmark set into two disjoint sets, such that
the training instances can represent the test instances well.
However, as aforementioned such a setting could not be always
appropriate since in some cases we might only have scarce and
biased training instances.

B. Problem Instance Generation

The lack of instances, though less discussed in the context
of automatic solver construction, has attracted much attention
from the perspective of empirical evaluation of solvers. In
this area, the main goal is to automatically generate problem
instances with diverse characteristics such as hardness and
problem features. Various instance generation methods have
been proposed to problem domains such as TSP [40]–[45],

SAT [40], [46], job shop scheduling problems [47], con-
straint satisfaction problems (CSP) [40], [48], graph-coloring
problems [21] and bin-packing problems [49]. The generated
instances are usually further used for comprehensive analysis
of the strengths and weaknesses of existing solvers [40]–[43],
[45], [48], [49], algorithm performance prediction [41], [42],
[45] and algorithm enhancement [44], [47].

C. Generative Adversarial Networks

The general idea of GAST is similar to Generative Adver-
sarial Networks (GAN) [50]. GANs also maintain an adversar-
ial game in which a discriminator is trained to distinguish real
samples from fake samples synthesized by a generator, and the
generator is trained to deceive the discriminator by producing
ever more realistic samples. However, there are some main
differences between GAST and GANs. First, the overall goals
of them are different. GANs focus on the generative models
that could capture the distribution of complicated real-world
data. For GAST, the main goal is to build powerful parallel
portfolios (analogous to the discriminative models in GANs);
while the instance generation module as well as the generated
instances are more like by-products. Second, domains to which
GAST and GANs are applicable are different. Currently GANs
(and the more general idea of adversarial learning) are mostly
successfully applied to vision-related domains, such as image
generation [51], [52], imgae dehazing [53], style transfer [54],
[55], image classification [56] and clustering [57], [58]. In
comparison, GAST is proposed for problem-solving domains
such as planning and optimization. Third, the main technical
issues in two areas are different. The ones faced by GANs
are the difficulties in modeling complex and large-scale real-
world data sets (e.g., mode collapse problem) as well as
optimizing large-scale deep neural networks used in GANs.
It has been observed that appropriate hyper-parameters are
crucial for GANs to work well, and there have been a lot
of efforts [59]–[61] dedicated to overcoming these difficulties.
For GAST, the main difficulties lie in two aspects: (i) how to
generate useful instances for portfolio construction; (ii) how to
appropriately integrate the instance generation into portfolio
construction process, such that the portfolio’s generalization
performance would be kept getting improved.

III. GENERATIVE ADVERSARIAL SOLVER TRAINING

A. Parallel Portfolios

A parallel portfolio with k component solvers is denoted
as a k-tuple c1:k = (c1, ..., ck), in which ci represents
the i-th component solver of c1:k. When solving a problem
instance, all component solvers of c1:k, i.e., c1, ..., ck, are run
independently in parallel until some termination condition is
met. Here the termination condition may vary according to the
problem domains considered and the performance metrics of
interest. When a decision problem (e.g., SAT) is considered,
all component solvers will be terminated once any of them
outputs an answer to the instance, i.e., SATISFIABLE or
UNSATISFIABLE. In this case the runtime needed by c1:k to
solve the instance is the runtime needed by the best component
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solver for solving this instance. Moreover, usually a cut-
off time, i.e., maximum runtime, will be introduced in this
case to prevent the solution process from being prohibitively
long in which no component solver could solve the problem
instance. On the other hand, if an optimization problem (e.g.,
TSP) is considered, the termination conditions are different
according to the performance metrics of interest. If the metric
considered is the runtime needed to find a good enough
solution of accepted quality level (e.g., within a predefined
gap to the optimum), the termination condition is that any of
the component solvers finds such a solution. As in the case of
decision problem, a cut-off time could be introduced in this
case to prevent the solution process from being prohibitively
long. If the metric considered is the quality of the best solution
found within a time budget, each component solver will be
terminated when the time budget is exhausted and the best
solution among the ones found by the component solvers will
be returned as the output of c1:k.

Overall, the performance of c1:k on an instance s, denoted as
P (c1:k, s), is the best performance achieved among c1, ..., ck
on s:

P (c1:k, s) = min
j∈{1,..,k}

m(cj , s), (1)

where m(cj , s) is the performance of cj on s according to
a performance metric m (e.g., runtime or solution quality).
Without loss of generality, we assume a smaller value is better
for m. Note that in practice when an optimization problem is
considered, the runtime metric might not be measurable. The
reason is that usually we do not know whether the found solu-
tions by the component solvers are of accepted quality levels
(thus terminating all component solvers), since the optimal
solutions of the problem instances are unknown. However,
this does not affect the above definition. The performance
of c1:k on an instance set I is an aggregated value of the
performances of c1:k on all instances in I . Specifically, the
following weighted average function, which is widely used in
the literature, is used for calculating the performance of c1:k
on I , i.e., P (c1:k, I):

P (c1:k, I) =
1

|I|
∑
s∈I

ws · P (c1:k, s), (2)

where |I| refers to the number of the instances in I and
the weight w is introduced to handle different scales of the
performances on different instances (usually used when m is
related to solution quality).

B. The Problem of Parallel Portfolio Construction

When constructing a portfolio c1:k with automatic algorithm
configuration, each component solver of c1:k is an individual
configuration selected from a configuration space C, i.e.,
c1, ..., ck ∈ C. C is induced by a set of parameterized solvers
B, called base solvers. As illustrated in Fig. 1, if there is only
one base solver, the configuration space is exactly the solver’s
parameter space; otherwise the configuration space takes each
base solver’s parameter space as a subspace, and would include
an additional top-level parameter to decide which subspace
(base solver) would be used. The full configuration space of

Solver 1 

(a) C in the case of |B| = 1

Solver 1

solver choice parameter

……
Solver 2 Solver 3

(b) C in the case of |B| > 1

Fig. 1. Configuration space C induced by a set of parameterized solvers
B in cases of |B| = 1, i.e., B = {Solver1} in (a), and |B| > 1, i.e.,
B = {Solver1, Solver2, ...} in (b), respectively. Each rounded rectangle in
this figure represents the parameter space of the corresponding base solver.

c1:k is Ck =
∏k

i=1{c|c ∈ C}, where the product of two
configuration spaces A and B is the Cartesian product of A
and B, i.e., A × B = {(a, b)|a ∈ A and b ∈ B}. In other
words, the size of the full configuration space for c1:k is |C|k.

Given the above definitions, the parallel portfolio construc-
tion problem considered here can be stated as follows. Given
a possibly non-representative training set I , a performance
metric m, a set of parameterized base solvers B and the
configuration space C induced by B, select configurations
c1, ..., ck from C to form a parallel portfolio c1:k, such that
c1:k can generalize well, i.e., achieve good P (c1:k, I

∗) on the
target set I∗, which is impossible to enumerate in advance,
e.g., of huge size or is changing over time.

C. Generative Adversarial Solver Trainer (GAST)
Overall, there are two key design principles for GAST.
The first concerns generating useful training instances. Non-

representative training set generally means that some target
cases are not covered. It is thus necessary to generate ad-
ditional training instances. On the other hand, the instances
that are out of the training set but can already be solved well
by the solvers being constructed are actually of no use for
improving the generalization of the solvers. Hence, a desirable
generated instance should be not present in the training set and
meanwhile hard for the solvers being constructed.

The second principle concerns the complementarity [14],
[15], [17], [18], [62] among the component solvers, which
is crucial for the effectiveness of any parallel portfolio. Ac-
cording to Eq. (1), the performance of a parallel portfolio on
an instance depends on the best-performing component solver
on the instance. Since it is unlikely that a unique component
solver performs the best on all instances, it is more desirable
that different component solvers are good at solving different
problem instances. In other words, GAST should promote
different component solvers to handle different instances.

The pseudo-code of GAST is given in Algorithm 1. Overall,
GAST has an iterative structure and each iteration of GAST
consists of two subsequent phases: a configuration phase
(lines 3-7) and an instance-generation phase (lines 9-23). The
configuration phase is similar to PARHYDRA [17] in which
component solvers of c1:k are configured iteratively. More
specifically, in the i-th iteration, GAST uses an algorithm con-
figurator (AC in Algorithm 1) with time budget tC to config-
ure ci to add to the current portfolio c1:i−1, i.e., (c1, ..., ci−1),
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Algorithm 1 GAST
Input: base solvers B with configuration space C; number
of component solvers k; instance set I; performance metric
m; algorithm configurator AC; independent configurator
runs n; time budgets tC , tV , tI for configuration, validation
and instance generation respectively
Output: parallel portfolio c1:k

1: for i← 1 : k do
2: /*————configuration phase———————*/
3: for j ← 1 : n do
4: obtain a portfolio cj1:i by running AC on configura-

tion space {c1:i−1} × {c|c ∈ C} using m for time
tC

5: end for
6: validate c11:i, ..., c

n
1:i on I using m for time tV

7: let c1:i ← arg mincj1:i|j∈{1,...,n}
P (cj1:i, I) be the port-

folio with the best validation performance
8: /*————instance-generation phase————–*/
9: if i = k then break //skip instance generation

10: according to the validation results, assign the quality
score of each s ∈ I as ws · P (c1:i, s)

11: Ī ← I
12: while time spent in this phase not exceeds tI do
13: Inew ← ∅
14: for each s ∈ I do
15: refset← randomly sample from I \ {s}
16: snew ← variation(s, refset)
17: Inew ← Inew ∪ {snew}
18: end for
19: test c1:i with each s ∈ Inew and assign the quality

score of s as ws · P (c1:i, s)
20: I ← I ∪ Inew
21: remove |Inew| instances from I with binary tourna-

ment selection
22: end while
23: I ← I ∪ Ī
24: end for
25: return c1:k

such that the performance of the resulting portfolio c1:i, i.e.,
(c1, ..., ci), on instance set I , is optimized (line 4). During
the configuration process of ci (line 4), GAST would run the
entire portfolio on the considered instances while only ci is
available to be configured, leaving (c1, ..., ci−1) fixed. In other
words, in each iteration GAST aims to find a configuration that
maximizes marginal performance contribution across the con-
figurations identified in the previous iterations. Since generic
algorithm configurators are usually randomized methods, to
ensure the reliability of the outputs of the algorithm configutor
AC, following the established best practices [6], [11], GAST
always performs n independent runs of AC when configuring
ci (line 3) and thus obtains n different portfolios produced by
these runs, i.e., c11:i, ..., c

n
1:i. These portfolios are then tested

on I with time budget tV (line 6) and the one achieving the
best validation performance will be retained (line 7).

The instance-generation phase begins once the configuration

phase finishes. Note in the last iteration (i.e., the k-th iteration)
of GAST, instance generation is skipped (line 9) because
there is no need to generate more instances since c1:k has
been completely constructed. In the instance-generation phase
GAST first creates a backup of the training set I (line 11)
that will be restored to the training set at the end of this phase
(line 23), and then enters an iterative process in which GAST
repeatedly generates new instances based on current training
set I (lines 12-18), tests these new instances with current
portfolio c1:i (line 19) and uses them to update the instance set
I (lines 20-21), until the time spent for generating instances
reaches budget tI (line 12).

More specifically, to generate a new instance snew, GAST
uses an existing instance s in I as a base instance, and
randomly selects a set of instances from I excluding s as the
reference instances (refset in line 15). snew is then generated
by modifying s with random perturbation and insertion of
structures/components extracted from the reference instances
(by the variation procedure in line 16). Taking each instance
in I as the base instance (line 14), GAST eventually generates
a set of new instances Inew. Instances generated in this way
are expected to differ significantly from the existing instances
in I , but at the same time would preserve some characteristics
of the existing ones. This is desirable because generating too
similar instances to existing ones is not useful for exploring
the instance space, which is crucial for improving the gen-
eralization of the portfolio being constructed, and generating
instances completely unrelated to existing ones could result
in instances of no interests, e.g., instances with no practical
significance. Moreover, since each existing instance in I is
used as the base instance to generate new ones, the diversity
in Inew is expected to be enhanced. The precise definition of
the modification procedure depends on the specific problem
domain considered; thus it is encapsulated as the variation
procedure in Algorithm 1 (line 16). A lot of existing instance
variation mechanisms, which are applicable for a wide range of
problem domains (see Section II), could be used to instantiate
variation when applying GAST to the corresponding domains
(see Section IV for the instantiations for TSP and SAT).

Another two important aspects in the instance-generation
phase are the instance evaluation and the instance selection. As
aforementioned, only instances that cannot be solved well by
the current portfolio c1:i is valuable for improving the general-
ization of the portfolio; thus in the instance-generation phase
each instance is assigned with a quality score equal to the
performance of the current portfolio on it (i.e., ws ·P (c1:i, s))
— the worse the performance, the higher the score (note
ws is just the normalization factor to handle different scales
of the performances). For the initial instances in I when
entering instance-generation phase, their quality scores could
be directly obtained from the validation results which were
cached in the configuration phase (line 10). As for those newly
generated instances, GAST will test them with c1:i (line 19)
and obtain their quality scores 2. After that, all newly generated

2When testing the generated instances with c1:i, if the component solvers
in c1:i are randomized solvers, which is actually very common, c1:i will be
run on each instance for several times with different random seeds, and the
mean value of the test results will be used.
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instances, i.e., instances in Inew, are included in the training
set I (line 20), and then binary tournament selection [63],
which repeatedly randomly selects two instances from I and
removes the one with the lower quality score, is used to remove
|Inew| instances from I to keep its size unchanged.

In general, GAST alternates between generating new train-
ing instances that are hard for current portfolio and configuring
a new component solver to solve these instances while leaving
existing component solvers clamped. In this sense, GAST
always promotes the component solver being configured in the
current iteration to handle the newly generated instances which
are different from the ones considered in previous iterations,
such that the complementarity among the component solvers
of the constructed portfolio would be enhanced.

D. Discussions

Intuitively, if we consider an instance “covered” by a
portfolio c1:k as it can be solved well by c1:k; then the
target of the construction problem considered here is to
find c1:k = (c1, . . . , ck) from configuration space C with
maximum coverage on the target instance space I∗. Generally,
the problem is NP-hard and can be approximated within
1 − 1

e + o(1) ≈ 0.632. The approximation ratio is achieved
by the generic greedy method [64]. More specifically, this is
an iterative method which starts from an empty portfolio and
at each iteration selects a configuration from C that covers
the largest number of uncovered instances in I∗ to add to the
portfolio. The iterative framework of GAST (the outermost
loop in Algorithm 1) is exactly the same as the greedy
method except that GAST involves an additional instance-
generation phase in each iteration. Recall that in the problem
considered here we are only given a training set I that is
non-representative of I∗, and I∗ is impossible to enumerate
in advance, e.g., of huge size or is changing over time. This
means during the portfolio construction it is unclear which
instances in I∗ are not covered by the current portfolio. Thus
it is necessary to first identify those uncovered instances in I∗

for enlarging the portfolio’s coverage on I∗, which is exactly
what the adversarial instance generation does. In comparison,
existing approaches do not involve such mechanisms; thus they
could only optimize the portfolio’s coverage on the training set
I . For the instances that are in I∗ but not in I , the portfolio’s
performance is not optimized and could be arbitrarily bad.

E. Time Complexity and Computational Costs

The most time-consuming parts of GAST are the runs of the
component solvers on the problem instances, and the incurred
computational costs account for the vast majority of the total
costs of GAST. Therefore we analyze the time complexity
of GAST in terms of the total number of the runs of the
solvers. In Algorithm 1 the solvers are invoked in three places,
i.e., configuration (line 4), validation (line 9) and instance
generation (line 19). Recall that in the i-th iteration of GAST,
there are i component solvers in the portfolio and they are
always executed in parallel. Let NC , NV and NI denote the
number of the runs of each component solver in configuration
(line 4), validation (line 9) and instance generation (line 19),

TABLE I
COMPUTATIONAL COSTS FOR EXISTING PARALLEL PORTFOLIO

CONSTRUCTION APPROACHES. tC , tV , tI ARE TIME BUDGETS FOR
CONFIGURATION, VALIDATION AND INSTANCE GENERATION

RESPECTIVELY. k IS THE PORTFOLIO SIZE. n IS THE NUMBER OF
INDEPENDENT RUNS OF THE USED ALGORITHM CONFIGURATOR. NOTE

THAT FOR DIFFERENT APPROACHES tC , tV COULD BE SET TO DIFFERENT
VALUES.

CPU time
GAST

∑k
i=1 i · n · (tC + tV ) +

∑k−1
i=1 i · tI

PARHYDRA
∑k

i=1 i · n · (tC + tV )
GLOBAL n · k · (tC + tV )
PCIT n · k · (tC + tV )

respectively. The total number of runs of solvers in the i-
th iteration of GAST is i · [n · (NC + NV ) + NI ], where
n is the number of independent configurator runs (line 3).
Considering the instance-generation phase is skipped in the
last iteration of GAST, the time complexity of GAST in terms
of the number of the runs of the solvers is O(

∑k
i=1 i · n ·

(NC + NV ) +
∑k−1

i=1 i · NI) = O(k2n(NC + NV ) + k2NI).
Similarly, we could obtain that the time complexity of existing
parallel portfolio construction approaches, i.e., PARHYDRA,
GLOBAL and PCIT, are O(k2n(NC+NV ), O(kn(NC+NV ))
and O(kn(NC +NV )), respectively. For detailed information
of how these results are derived, we refer the reader to
the original papers [17] for PARHYDRA and GLOBAL and
[18] for PCIT. Note that for a specific portfolio construction
approach, the values of NC , NV and NI depend on the
predefined time budgets tC , tV and tI , respectively, and for
different approaches, tC , tV and tI could be set differently.

Given time budgets tC , tV and tI , the total CPU time
consumed by GAST is

∑k
i=1 i·n·(tC+tV )+

∑k−1
i=1 i·tI . The n

independent runs of AC (line 4) and the validation processes
(line 6) can be performed in parallel if n machines (with each
of k cores) are available, in which case GAST will require
k · (tC + tV ) + (k − 1) · tI wall clock time to complete. For
completeness, in Table I we also list the needed CPU time for
PARHYDRA, GLOBAL and PCIT, which will be referenced
in the experiments (see Section V-A4).

IV. INSTANTIATIONS OF GAST FOR TSP AND SAT

In this section the variation procedure in GAST is instanti-
ated for TSP and SAT respectively, resulting in two approaches
GAST-TSP and GAST-SAT.

A. GAST-TSP

Specifically, the symmetric TSP, i.e., the distance between
two cities is the same in each opposite direction, with distances
in a two-dimensional Euclidean space is considered here.
Each instance of such TSP is represented by a list of (x, y)
coordinates with each coordinate as a city. We extended
the variation strategy used in [40] which requires the base
instances and the reference instances have the same size (i.e.,
number of the cities) to allow the use of instances of different
sizes. Specifically, given a base instance s, and a reference
instance s∗ (meaning GAST-TSP requires only one reference
instance in refset; see lines 15-16 in Algorithm 1), the
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variation procedure in GAST-TSP applies a variable-length
crossover and a uniform mutation to s and s∗ to generate a
new instance. Let |s| and |s∗| be the length of the coordinate
list of s and s∗ respectively. The crossover first randomly
selects min{|s|, |s∗|} − 1 split points in both lists, and then
constructs a new coordinate list (i.e., the new instance snew)
in a sequential manner by choosing each segment from either
of the two lists with equal probability. The new list is then
subject to the mutation operator that replaces each coordinate
in the list, with a probability 1/|snew|

1
2 , with a coordinate

uniform randomly chosen within the ranges bounded by the
minimum and the maximum values of the coordinates in the
lists of s and s∗.

B. GAST-SAT

The variation procedure in GAST-SAT utilizes the spig
technique proposed by [46], which iteratively removes partic-
ular components (bounded together through a core variable)
from the base instance s and then inserts such structures
extracted from the reference instances into s. The generated
instance will only be accepted by spig if all of its features
are within σ standard deviations of the mean value across
all instances (including s and the reference instances). The
value of σ is set to a quite small value, i.e., 3, by [46] for
generating similar enough instances to the existing ones, which
obviously is not our goal here. We thus set σ as a random
variable whose value is randomly sampled from [3, 300] for
each acceptance check to introduce more randomness in the
generated instances. To prevent the runtime of spig from being
too long, the size of the reference instance set, i.e., |refset|,
is set to d|I| 12 e, where |I| is the size of the training set.

V. EXPERIMENTS

We conducted experiments on SAT and TSP. Following the
common scheme, in the experiments we used GAST to build
parallel portfolios based on a training set, and then compared
them against the ones constructed by the existing approaches,
on an unseen test set.

A. Experimental Setup

1) Portfolio Size and Performance Metric: We set the
number of component solvers k to 4, since 4-core machines are
widely available now. The optimization goal considered here is
the runtime needed by a solver to solve the problem instances
(for SAT) or to find the optimums of the problem instances (for
TSP). In particular, we set m to Penalized Average Runtime–10
(PAR-10) [6], which is the average runtime over all the test
runs, where those unsuccessful runs (unable to solve the given
instance within the cut-off time) are counted as 10 times the
cut-off time. Note for PAR-10 the weight w in Eq. (1) is set
to 1. The optimal solutions for TSP instances were obtained
using Concorde [67], an exact TSP solver.

2) Instance Sets: Since we focus on the scenarios where the
available training instances are non-representative, it is very
important to decide an appropriate way to choose the instances.
We used two different ways to obtain the instances, thus

dividing our experiments into two parts. In the first part we
obtained instances through instance generators and evaluated
GAST-TSP in this part because for TSP there exist generators
that could generate instances with diverse characteristics.
Specifically we used the portgen and the portcgen generators
from the 8th DIMACS Implementation Challenge [68] to
generate 150 “uniform” instances (in which the cities are
randomly distributed) and 150 “clustering” instances (in which
the cities are distributed around different central points) to
form a set of 300 instances, denoted as TSPwhole. The problem
sizes of all these generated instances are within [400, 600].

The instance-generation way has two potential issues. First
the generated instances might be far away from the real-
world cases, thus making the evaluation on them not of
practical significance. Second, since GAST also involves in-
stance generation (see Algorithm 1), there is a possibility
that the underlying generation model in GAST is similar
to the instance generators used here. To avoid these issues,
in the second part we only obtained the instances from the
industrial benchmark suites and evaluated GAST-SAT in this
part. Specifically, we obtained two industrial benchmarks, IBM
Hardware Verification (HV) benchmark, and Bounded Model
Checking (BMC) benchmark, from the Algorithm Configura-
tion Library (AClib) [7], and randomly selected 150 instances
from each of the two sets to form a set of 300 instances,
denoted as SATwhole.

3) Experimental Scenarios: For brevity, we only describe
how we split TSPwhole here. For SATwhole the same procedure
was conducted. We split TSPwhole into training sets and test
sets in two different ways, for simulating two different cases.
The first case “SMALL” means the available training set
contains only a small number of instances. In this case we
randomly selected 1/6 instances (50 in total) from TSPwhole
as training instances and used the left instances (250 in total)
as test instances. The second case “BIAS” means the training
instances are biased to narrowly defined cases. In this case
from TSPwhole we randomly selected 1/3 instances from one
of the two types of the instances (50 in total; recall that there
are 150 “uniform” instances and 150 “clustering” instances
in TSPwhole) as training instances, and used the left instances
(250 in total) as test instances.

Since the above split procedure is randomized and the
choices of training/test instances would obviously affect the
performances of portfolio construction approaches, to ensure
the reliability of our experiments, we repeated the above split
procedure for 4 times for each of “SMALL” and “BIAS” cases,
which eventually gave us 8 different experimental scenarios,
with each of a unique pair of training set and test set, for
each of TSP and SAT domains. For convenience, we use TSP-
SMALL/BIAS-1/2/3/4 and SAT-SMALL/BIAS-1/2/3/4 to de-
note these scenarios. Moreover we use TSP-SMALL to denote
a set of 4 scenarios {TSP-SMALL-1/2/3/4}, and the same rule
applies to TSP-BIAS, SAT-SMALL and SAT-BIAS.

Table II summarizes the instance sets, the cut-off time
and the base solvers used in different scenarios. The base
solver used in TSP-SMALL/BIAS was LKH version 2.0.7
[65] (with 23 parameters), one of the state-of-the-art inexact
solver for TSP. The base solver used in SAT-SMALL/BIAS
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TABLE II
SUMMARY OF THE INSTANCE SETS, THE CUT-OFF TIME AND THE BASE SOLVER IN EACH SCENARIO.

Instance Sets Cut-off Time Base Solvers
TSP-SMALL Randomly select 50 instances from TSPwhole as training in-

stances and the rest 250 instances are used as test instances 1s LKH version 2.0.7 [65]
with 23 parametersTSP-BIAS Randomly select 50 instances from 150 “uniform” instances

or 150 “clustering” instances in TSPwhole as training instances
and the rest 250 instances are used as test instances

SAT-SMALL Randomly select 50 instances from SATwhole as training in-
stances and the rest 250 instances are used as test instances 150s lingeling-ala [66] with 118

parametersSAT-BIAS Randomly select 50 instances from 150 “IBM HV” instances
or 150 “BMC” instances in SATwhole as training instances and
the rest 250 instances are used as test instances

TABLE III
DETAILED TIME BUDGET IN TERMS OF HOURS OF CPU TIME FOR EACH

APPROACH IN EACH SCENARIO. “TSP” REPRESENTS 8 SCENARIOS
TSP-SMALL/BIAS-1/2/3/4 AND “SAT” REPRESENTS 8 SCENARIOS
SAT-SMALL/BIAS-1/2/3/4. IN THE EXPERIMENTS THE NUMBER OF

INDEPENDENT RUNS OF ALGORITHM CONFIGURATOR n FOR ALL
APPROACHES WERE SET TO 10. tC , tV , tI ARE TIME BUDGETS FOR

CONFIGURATION, VALIDATION AND INSTANCE GENERATION
RESPECTIVELY. SEE TABLE I FOR HOW TO ESTIMATE THE NEEDED CPU

TIME FOR EACH APPROACH.

TSP SAT
tC tV tI total tC tV tI total

GAST 1.5h 0.5h 5h 230h 8h 4h 40h 1440h
GLOBAL 5h 0.5h – 220h 30h 4h – 1360h
PCIT 5h 0.5h – 220h 30h 4h – 1360h
PARHYDRA 1.5h 0.5h – 230h 8h 4h – 1200h

was lingeling-ala [66] (with 118 parameters), the gold medal
winning solver in the application track of the 2011 SAT
Competition.

4) Competitors and Time Budgets: We compared GAST
against the state-of-the-art automatic construction approaches
for parallel portfolios: GLOBAL, PARHYDRA [17] and PCIT
[18]. For all considered approaches here, SMAC version
2.10.07 [11] was used as the algorithm configurator. Since
the performance of SMAC could be often improved when
used with the instance features, we gave SMAC access to
the 126 SAT features and the 114 TSP features used in [18].
The detailed setting of the time budget for each approach is
given in Table III. Overall, in the experiments GAST would
consume around 10% more CPU time than other approaches
for the construction of parallel portfolios.

All the experiments were conducted on a cluster of 3
Intel Xeon machines with 128 GB RAM and 24 cores each
(2.20 GHz, 30 MB Cache), running Centos 7.5. The entire
experiments took almost 2.5 months to complete.

B. Results and Analysis

In each experimental scenario we tested each obtained
portfolio by running it on the test set for 50 times (for TSP)
and for 5 times (for SAT). The mean ± stddev of the test
performances (PAR-10 score over the test instances) across
these runs, and the total number of timeouts (#TOs), are
presented in the PAR-10† columns and the #TOs columns
respectively in Table IV. The validation performances of the
portfolios constructed by PARHYDRA, GLOBAL and PCIT
(except for GAST since it keeps changing the training set) on

the training sets are also reported in the PAR-10? columns in
Table IV. To determine whether the differences between the
test performances (i.e., the PAR-10† columns) were significant,
we performed a Wilcoxon signed-rank test (with significance
level p = 0.05) to them in each scenario, and a PAR-10 score
is indicated in bold face if it was not significantly different
from the best test PAR-10 score of the scenario.

Overall GAST is the best-performing approach in Ta-
ble IV and in most cases it constructed significantly and
substantially better portfolios than other approaches. Since
PARHYDRA could be seen as a variant of GAST without
the instance generation mechanism (see Section III-C), the
superior performances of GAST over PARHYDRA indicates
the effectiveness of the instance generation for improving
the portfolio’s generalization. Moreover, recall that we used
generated instances for TSP and industrial instances for SAT,
the consistent strong performances of GAST on both domains
indicate that generating new instances through recombination
of existing instances and random perturbation (as in GAST) is
a robust and effective way for training data augmentation. An-
other important observation from Table IV is that for existing
approaches the gaps between the validation performances and
the test performances are usually very large; this is conceivable
since in the experiments the training set is expected to be non-
representative, which in turn indicates the necessity of instance
generation in this case.

C. Comparison against PARHYDRA when k is larger than 4

Both GAST and PARHYDRA are iterative approaches,
adding one component solver to the portfolio per iteration.
To investigate how they would perform when the number of
iterations (i.e., portfolio size) gets larger, we run GAST and
PARHYDRA for 8 iterations (k = 8) in 4 scenarios TSP/SAT-
SMALL/BIAS-1. Let GASTi and PARHYDRAi denote the
resultant portfolios at the end of the i-th iteration of GAST
and PARHYDRA respectively. In each scenario we tested the
corresponding GASTi and PARHYDRAi with i = 1, ..., 8 on
the test instances, and let P[portfolio, scenario] be the average
test result in terms of PAR-10 scores. For example, P[GAST2,
TSP-SMALL-1] is the average PAR-10 score of the test result
of GAST2, i.e., the resultant portfolio at the end of the second
iteration of GAST in TSP-SMALL-1, on the test instances of
TSP-SMALL-1. The results are plotted along the number of
iterations in Fig. 2. There are three observations from Fig. 2.
First, for both GAST and PARHYDRA, the test performance
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TABLE IV
RESULTS OF VALIDATION AND TESTING IN THE 16 EXPERIMENTAL SCENARIOS. VALIDATION PERFORMANCES IN TERMS OF PAR-10 SCORES OVER THE

TRAINING SET ARE PRESENTED IN THE PAR-10? COLUMNS. TEST PERFORMANCES IN TERMS OF MEAN ± STDDEV OF THE PAR-10 SCORES ACROSS THE
50 RUNS (FOR TSP) AND THE 5 RUNS (FOR SAT) OVER THE TEST SET ARE PRESENTED IN THE PAR-10† COLUMNS. THE TOTAL NUMBER OF TIMEOUTS

(#TOS) IN TESTING IS PRESENTED IN THE #TOS COLUMNS. THE NAME OF THE CONSTRUCTION APPROACH IS USED TO DENOTE THE PORTFOLIOS
CONSTRUCTED BY IT. THE TEST PAR-10 SCORE OF A PORTFOLIO IS SHOWN IN BOLDFACE IF IT WAS NOT SIGNIFICANTLY DIFFERENT FROM THE BEST

TEST PERFORMANCE IN THE SCENARIO (ACCORDING TO A WILCOXON SIGNED-RANK TEST WITH p = 0.05).

GAST GLOBAL PARHYDRA PCIT
PAR-10† #TOs PAR-10? PAR-10† #TOs PAR-10? PAR-10† #TOs PAR-10? PAR-10† #TOs

TSP-SMALL-1/2/3/4

0.48 ± 0.09 327 0.23 1.02 ± 0.24 934 0.18 0.67 ± 0.18 565 0.18 0.58 ± 0.12 388
0.48 ± 0.08 282 0.24 0.71 ± 0.16 521 0.16 0.50 ± 0.13 354 0.19 0.56 ± 0.12 390
0.47 ± 0.11 277 0.29 0.98 ± 0.22 868 0.18 0.50 ± 0.12 356 0.19 0.48 ± 0.09 292
0.51 ± 0.12 319 0.28 1.01 ± 0.29 918 0.16 0.51 ± 0.15 346 0.18 0.50 ± 0.11 326

TSP-BIAS-1/2/3/4

0.68 ± 0.18 550 0.17 1.04 ± 0.20 925 0.15 0.82 ± 0.18 715 0.18 1.26 ± 0.21 1196
0.50 ± 0.14 340 0.20 0.72 ± 0.18 590 0.14 0.59 ± 0.16 471 0.20 0.55 ± 0.14 369
0.62 ± 0.14 434 0.26 0.90 ± 0.20 767 0.13 0.86 ± 0.20 753 0.17 0.75 ± 0.16 599
0.51 ± 0.13 307 0.23 0.76 ± 0.18 604 0.18 0.60 ± 0.18 442 0.18 0.50 ± 0.13 333

SAT-SMALL-1/2/3/4

317 ± 4.93 258 280 351 ± 15.3 285 255 333 ± 5.66 271 251 327 ± 5.66 266
283 ± 4.16 230 403 317 ± 7.66 258 398 321 ± 9.39 261 402 322 ± 15.0 262
335 ± 8.77 274 324 355 ± 9.88 290 307 334 ± 9.58 272 310 374 ± 2.49 306
295 ± 4.07 240 279 346 ± 9.65 281 285 336 ± 8.21 273 276 356 ± 10.4 291

SAT-BIAS-1/2/3/4

299 ± 4.79 243 377 383 ± 17.9 313 337 353 ± 3.25 288 366 369 ± 16.7 302
272 ± 6.53 220 517 350 ± 7.42 285 504 299 ± 11.0 241 512 287 ± 11.1 233
331 ± 4.36 271 250 394 ± 11.2 322 245 355 ± 6.77 290 248 387 ± 8.19 318
324 ± 5.58 264 393 348 ± 10.2 284 388 310 ± 7.48 250 364 334 ± 12.1 273
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Fig. 2. Test performance (in terms of average PAR-10 scores) progress
when k = 8 for GAST and PARHYDRA in 4 scenarios (TSP/SAT-
SMALL/BIAS-1) along the number of iterations. GASTi and PARHYDRAi

are the resultant portfolios at the end of the i-th iteration of GAST and
PARHYDRA respectively. P[portfolio, scenario] is the average test result in
terms of PAR-10 scores on the test set in the scenario.

improves monotonically from one iteration to the next. This is
reasonable because adding a component solver to an existing
portfolio would result in a new portfolio that is theoretically
not worse (mostly better) than the original portfolio. Second,
for both GAST and PARHYDRA, as the number of iterations
increases, the benefits of adding new component solvers grad-
ually decrease. Especially when number of iterations becomes
larger than 5, the performance improvement is very small.
This is conceivable because the performance of the portfolio

becomes better and better as the number of iterations increases,
which in turn makes it more difficult to further improve
the performance of the portfolio. Third, GAST could usually
achieve larger performance improvements than PARHYDRA.
For example, in SAT-BIAS-1, in the earlier iterations GAST
achieved remarkable performance improvements in compari-
son with PARHYDRA. This clearly shows the performance
of PARHYDRA is limited by the non-representative training
data while GAST could break such limitation with the instance
generation mechanisms.

D. Comparison against PARHYDRA with Augmented Training
Sets

Since GAST generates instances for configuring the portfo-
lios while the existing approaches do not involve any instance
generation, in this sense GAST actually uses much more
instances than other approaches for construction. A natural
question is that, if given enough generated instances, how will
existing approaches perform when compared against GAST? If
the former could reach (or even exceed) the performance level
of GAST, it could be concluded that it is unnecessary to realize
instance generation and portfolio construction simultaneously
in an adversarial framework (as in GAST); instead, directly
generating enough instances and then using existing portfolio
construction approaches to build portfolios on them is already
good enough for handling data-scarce/biased scenarios.

To answer this question, in each of the 8 SAT scenarios,
i.e., SAT-SMALL/BIAS-1/2/3/4, we used the same instance
generation procedure as in GAST (Lines 13-18 in Algorithm 1)
to generate a large set of instances based on the training set.
The size of the generated set is 5 times the size of the training
set. Recall that the training set contains 50 instances, we thus
obtained an augmented training set of 300 instances in each
SAT scenario, and then PARHYDRA was used to construct a
parallel portfolio on these augmented training sets, and then
the obtained portfolio was tested on the test sets. As before,
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TABLE V
TEST PERFORMANCES IN TERMS OF MEAN ± STDDEV OF THE PAR-10

SCORES ACROSS THE 5 RUNS OVER THE TEST SET IN THE 8 SAT
SCENARIOS, I.E., SAT-SMALL-BIAS-1/2/3/4. THE NAME OF THE
CONSTRUCTION APPROACH IS USED TO DENOTE THE PORTFOLIOS
CONSTRUCTED BY IT. “PARHYDRA-A” REFERS TO PARHYDRA

CONFIGURING BASED ON AUGMENTED TRAINING SETS. A PAR-10 SCORE
IS SHOWN IN BOLDFACE IF IT WAS NOT SIGNIFICANTLY DIFFERENT FROM

THE BEST TEST PERFORMANCE IN THE SCENARIO (ACCORDING TO A
WILCOXON SIGNED-RANK TEST WITH p = 0.05).

GAST PARHYDRA PARHYDRA-A

SAT-SMALL-1/2/3/4

317 ± 4.93 333 ± 5.66 325 ± 4.89
283 ± 4.16 321 ± 9.39 300 ± 8.90
335 ± 8.77 334 ± 9.58 349 ± 6.76
295 ± 4.07 336 ± 8.21 329 ± 10.4

SAT-BIAS-1/2/3/4

299 ± 4.79 353 ± 3.25 331 ± 13.4
272 ± 6.53 299 ± 11.0 323 ± 12.5
331 ± 4.36 355 ± 6.77 345 ± 12.8
324 ± 5.58 310 ± 7.48 333 ± 12.4

each portfolio was tested by running it on the test set for 5
times. The mean ± stddev of the test PAR-10 scores across
the 5 runs are presented in the “PARHYDRA-A” column in
Table V.

For the sake of comparison, the test performances of the
portfolios constructed by GAST and PARHYDRA (without
augmented training sets) in SAT-SMALL/BIAS-1/2/3/4, which
are originally presented in Table IV, are also presented in
Table V. It could be seen from Table V that even with
augmented training sets, PARHYDRA still could not reach the
performance levels of GAST. Note in SAT-SMALL-3, SAT-
BIAS-2/4, when using generated instances, the performance
of PARHYDRA would even deteriorate. The key for train-
ing set augmentation is which kinds of generated instances
should be used. GAST generates instances in an adversarial
process where only the hard instances for the current portfolio
are selected because on them there is high opportunity for
improvement. This could be seen as a guided sampling in
the instance space, which always seeks to find areas not
covered by the portfolio yet. On the other hand, treating data
augmentation and portfolio construction as two sequential and
independent phases, i.e., generating enough training instances
and then using PARHYDRA to build portfolios on them, lacks
such guidance and might cause useless (e.g., too easy or
duplicate) instances in the training set, which might be harmful
for the portfolio construction (as in the cases of SAT-SMALL-
3 and SAT-BIAS-2/4). Overall, GAST is more effective at data
augmentation and thus performs better.

E. Comparison against Hand-Designed Parallel Solvers

To further evaluate the portfolios constructed by GAST, we
compared them against the state-of-the-art manually designed
parallel solvers. Specifically, we considered the ones con-
structed for SAT. We tested each of the 8 portfolios constructed
by GAST in SAT-SMALL/BIAS-1/2/3/4 on the entire SAT
instance set, i.e., SATwhole, and reported the best, the worst
and the median performance (in terms of PAR-10) achieved
among these portfolios in Table VI. For manually designed
solvers, we chose Plingeling-ala [66], which is the official
parallel version of lingeling-ala (the base solver in all the SAT

TABLE VI
TEST PERFORMANCES IN TERMS OF MEAN ± STDDEV OF THE PAR-10

SCORES ACROSS THE 5 RUNS OVER SATWHOLE . “UZK” REFERS TO
PFOLIOUZK. “ALA” REFERS TO PLINGELING-ALA. “BBC” REFERS TO

PLINGELING-BBC. “GAST-B”, “GAST-W”, AND “GAST-M” REFERS TO
THE BEST, THE WORST AND THE MEDIAN PERFORMANCE ACHIEVED

AMONG THE 8 PORTFOLIOS CONSTRUCTED BY GAST IN
SAT-SMALL/BIAS-1/2/3/4. A PAR-10 SCORE IS SHOWN IN BOLDFACE

IF IT WAS NOT SIGNIFICANTLY DIFFERENT FROM THE BEST TEST
PERFORMANCE (ACCORDING TO A WILCOXON SIGNED-RANK TEST WITH

p = 0.05).

UZK ALA BBC GAST-B GAST-W GAST-M
SATwhole 317±7.48 310±9.24 274±4.03 282±5.18 313±5.79 301±8.21

scenarios in our experiments), pfolioUZK [69], the gold medal
winning solver of the parallel track of the SAT’12 Challenge,
and Plingeling-bbc [70], the gold medal winning solver of the
parallel track of the SAT’16 Competition. Note that all the
manually designed solvers considered here have implemented
far more advanced parallel solving strategies (e.g., clause
sharing) than only independently running component solvers
in parallel. The default settings of these solvers were used and
all of them were tested on SATwhole. The test performances are
presented in Table VI. As before, we performed a Wilcoxon
signed-rank test (with significance level p = 0.05) to the test
performances, and a PAR-10 score is indicated in bold face if it
was not significantly different from the best test performance.

As shown in Table VI, the portfolios constructed by GAST
always perform better than pfolioUZK and in most cases
perform better than Plingeling-ala. It is impressive to see
that in the best case, the portoflio constructed by GAST
(regardless of its simple parallel-solving strategy) could reach
the performance level of the more state-of-the-art Plingeling-
bbc, and moreover the performance difference between them
is statistically insignificant. Such results indicate that GAST
could identify powerful parallel portfolios, with little human
effort involved. It is expected that given more state-of-the-art
base solvers, e.g., lingeling-bbc, GAST could deliver parallel
portfolios with even better performance.

VI. CONCLUSIONS AND DIRECTIONS FOR
FURTHER RESEARCH

This paper proposed a novel approach, dubbed GAST, for
the automatic construction of parallel portfolios in environ-
ments where the training sets are non-representative. The
most novel feature of GAST is that, different from existing
approaches, it considers instance generation and portfolio
construction simultaneously in an adversarial process. Instan-
tiations of GAST for TSP and SAT were also proposed.
Experiment results showed that GAST could identify paral-
lel portfolios with much better generalization than the ones
generated by existing approaches when the training data was
scarce and biased. Moreover, it was further demonstrated that
the generated portfolios could reach the performance level of
the state-of-the-art parallel solvers designed by human experts.
Further directions for investigations may include:

• Further improvements to GAST. Diversity preservation
scheme, such as speciation [71] or negatively correlated
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search [72] can be introduced into GAST to explic-
itly promote cooperation between different component
solvers.

• Deeper understanding of the foundations of GAST. For
example, GAST actually maintains two adversary sets
competing against one another, which is a typical scenario
where the game theory can be applied.

• Other more general issues in training instance augmenta-
tion, e.g., similarity measure between problem instances
and instance space characterizing, are also worthy of
exploration.
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