Learn to Optimize: A Tutorial

Ke Tang, Shengcai Liu

Department of Computer Science and Engineering
Southern University of Science and Technology (SUSTech)
{tangk3,liusc3}@sustech.edu.cn

https://faculty.sustech.edu.cn/tangk3, http://nical.ai.shengcai

g
SUSTech NI@:\N

mailto:tangk3@sustech.edu.cn
https://faculty.sustech.edu.cn/tangk3
http://nical.ai.shengcai/

Outline SUSTech NI@:Vm

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

= Introduction to Learning to Optimize (L20)
s Research Directions in L20

= Automatic Algorithm Selection

= Automatic Algorithm Configuration

= Neural Combinatorial Optimization

= Summary

Optimization SUSTech Nf@:m

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

= |t concerns finding the best solutions that maximize (or minimize) some criterion

maximize f(x)
subject to: g,(x) <0, i=1...m
h(x)=0, j=1..p

s For optimization, the performances in terms of two aspects are often of interest

> Effectiveness, e.g., solution quality

> Efficiency, e.g., runtime, number of fithess evaluations

What is Learning to Optimize (L20) SUSTech NI@:m

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

= Learning concerns improving performance with the accumulation of experience

s Generally, L20 leverages learning to train solvers for the problems of interest

> The learning (training) phase is conducted offline

> The learned solver will be deployed in production/application

Learning Deployment [T
Problem | P ! : L |
Instances | > _________ solver | > Application

__ _/ \/

—~
Offline training Online inference (solving)

: e /
L20 vs. Classic Optimization SUSTech NI@LVE

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

= [raditionally,

> Experts hand-build algorithms/solvers based on theory/experience

> Practitioners pick a solver to use

s L20

> Experts propose L20 frameworks and training procedures
> Practitioners pick a L20 framework, prepare training data, and apply the training procedure

to obtain a solver to use

. C e . /
L20 vs. Classic Optimization SUSTech NI@:\N

Problem Human Sol Problem Learning | solver
definition expert Otver definition algorithm i

Q feedback evaluation
Y

Iterative refinement Training set

Y

s Classic s L20
> Human centered > Learning centered
> Heavily depends on domain expertise > Requires much less domain knowledge

> Expensive in human time > EXxpensive in computation time

L20 vs. Classic Optimization

Computing is getting cheaper and cheaper

CPU

I I T T T T

10

Data
MIPS/$ = 10-360.109293 +year " 0.178929

10° - -

10" i —
It
2 ‘-‘:‘ Ry
.2 ’ .2
107 - i -
% .

107 .
¢ .
y By 3
.

&5 .

5 2 : b i I;!

. Yieed
.

’xif

MIPS/$

] N 5 i3 =l
10 sk

i
.....

-10 - . 4 .
10+ i ol

102 . :

o™ g l I 1 | 1 1] 1
1940 1950 1960 1970 1980 1990 2000 2010 2020 2030
Year

LINPACK max/$

10°

CPU

g
SUSTech NI@-N

Science and Technology

I I I

Data
LINPACK max/§ = 10°263-296216 +year * 0130412

-
=3
[§)
T

[N

-
=1
T

-
=
)
T

10°

-10

1 1 1

1950

|
1960 1970 1980 1990
Year

One dollar’s worth of computer power, measured in MIPS (left) and FLOPS (right)

| 1 |
2000 2010 2020 2030

. . /
Key Research Questions in L20 SUSTech NIW:R

Learning Algorithm
(How to learn)

Va'be’ Va'be

NH Learning = =

Parameterized
Solvers

,,

Training Data Collection Learned Solvers
(Learn from what) (What to learn)

/
A Taxonomy of L20 SUSTech NIl@/:\E

Sufficient Data
Data Collection <
Few-shots/Cold-start
Supervision Signal Supervised Learning
Search Algorithms (e.g., EAs)
/— Learning Algorithm

Reward Signal Bayesian Optimization
Learn to Optimize

Exact/Heuristic/Meta-heuristic Solvers
Neural Networks
Solver

Hybrid Solvers

Reinforcement Learning

Algorithm Portfolios

o . . /
Research Directions in L20 SUSTech NIW:\R

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

= This tutorial covers several widely studied directions in L20
> Automatic Algorithm Selection (AAS)

> Automatic Algorithm Configuration (AAC)

>

Neural Combinatorial Optimization (NCO)

= Appropriate for handling different practical situations

>

>

AAS — there exist several powerful solvers for the problem, how to get the best of them?
AAC — the solver’s performance heavily depends on its parameter configuration, how to
identify the best configuration, or even to build a more powerful solver based on it?

NCO — how to build an effective solver in a unified framework that is applicable to a wide
range of problems?

10

Quick Recap of TSP SUSTech NI@:wm

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

= We use the well-known traveling salesman problem (TSP) as an example
> One of the most representative optimization problem
> Comprehensive empirical results available

> ldeas presented in the tutorial also apply to other optimization problems

L S A
o
\'/OK

= TSP concerns finding the shortest Hamilton cycle on a complete graph

> NP-hard, exhaustive search has a complexity of O (n!)

11

e_ o g
Traditional Solvers for TSP SUSTech NI@:\N

Southern University of Science and Technology

2.43 3/2 0-4/Vn 0 0 0
Exactness
>
O(n?) O(n?logn) O(n?m(n)) O(n*?b(n)) O(n?2) O(n!)
Complexity
| | | | | | B
| | | | | |
Farthest Christofidesl®l 2-Opti Concordel?l/ Dynamic Exhaustive
Insertion!” LKH-30 Gurobil¥l Programmingl!l search
HK_J
EAXI8] Tractable (w/ Intractable for n>20

[1] Held, Richard, A d h bl one Computer)

1| Held, Richard, ynamic programming approach to sequencing problems, 1962

[2] Applegate, Bixby, Chvatal, Cook, The Traveling Salesman Problem, 2006 up to n:27000 Intractable for n>40
[3] Gu, Rothberg, Bixby, Gurobi, 2008

[4] Johnson, McGeoch, The traveling salesman problem: A case study in local optimization, 1995

[5] Helsgaun, An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Constrained Traveling Salesman and Vehicle Routing Problems, 2017

[6] Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, 1976

[7] Johnson, Local Optimization and the Traveling Salesman Problem, 1990

[8] Nagata, Yuichi, and Shigenobu Kobayashi. A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem. 2013

' Source: https://www .ipam.ucla.edu/programs/workshops/deep-learning-and-combinatorial-optimization/ D

Outline

= Introduction to Learning to Optimize (L20)
s Research Directions in L20

= Automatic Algorithm Selection

= Automatic Algorithm Configuration

= Neural Combinatorial Optimization

= Summary

SUSTech NI@:Vm

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

13

. . . /
Automatic Algorithm Selection SUSTech NI@LN

Reward Signal Bayesian Optimization

Sufficient Data
Data Collection —<
Few-shots/Cold-start
Supervision Signal Supervised Learning
Search Algorithms (e.g., EAs)
/— Learning Algorithm

Learn to Optimize

Exact/Heuristic/Meta-heuristic Solvers
Neural Networks
Solver

Hybrid Solvers

Reinforcement Learning

Algorithm Portfolios

There exist several powerful solvers for the problem, how to get the best of them?

14

Automatic Algorithm Selection (AAS) SUSTech Ni@m

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

s AAS seeks to train an algorithm selector that chooses the best algorithm for a

given problem instance

= |t generally requires
> An algorithm portfolio
> A set of training instances
> A set of instance features (unnecessary for deep learning-based approach)

> Instance x Algorithm performance data

15

Algorithm Portfolios

s Comes from economics [Huberman et al., 1997]

= A portfolio of financial assets (e.g., stocks)

> maximize profit and minimize risk

= A portfolio of algorithms
> Nno “universal best” algorithm
> the best algorithm is priori unknown

> maximize overall performance

P
SUSTech NI@:\N

\-

Total
32.7K

Portfolio

Holdings 4

Ticker Value Gain % of Value
n GOOG 10.5K +4.8% 32.1%
A PM 8526.00 +10.7% 26.1%
AAPL 6237.50 +1.8% 19.1%
& e 487050 +18.1% 14.9%
n AMD ?2575.00 -19. 5% 7.9%

16

Instance x Algorithm Performance Data

Instance AS MMAS ACS

gr24.tsp [1275.64 1278.04 1277.52
berlin52.tsp 7746.16 7689.92 7729.16
st70.tsp 714.96 703.12 726.68
rd100.tsp 8717.36 8694.24 8659.53
ch150.tsp 7219.84 6867.68 6908.84
kroA200.tsp 40269.76 32858.68 32643.76

tsp225.tsp 4124.64 4095.8 4039.4
a280.tsp 3493.16 3020.28 BT
lin318.tsp |53175.84 47739.36 47494.96
pcb442.tsp |60781.08 59118.32 59264.12
rats75.tsp 9479.68 7795.44 /71748
rat783.tsp |12684.6 10199.16 10038.87

g
SUSTech NI@:\N

' A. Puris, R. Bello, F. Herrera, “Analysis of the Efficacy of a Two-Stage Methodology for Ant Colony Optimization: Case of Study with TSP
. and QAP,” Expert Systems with Applications 37(7) !

17

g
Problem Features SUSTech NI@:\N

= 100+ TSP manually designed features are now available [Kerschke et al., 2018§]

re

Meta-feature Description

Vv Number of vertices

E Number of edges

B i The lowest cost of edge

Ehig The highest cost of edge

Eavg Average of the edges costs

Estq Standard deviation of the edges costs

Egmode Mode quantity of the edges costs

Etrmode Frequency of the mode of the edges costs

Eode Average of the costs that occurs the most frequently in the edges
Eemsaran Median of the edges costs

Eiavg Quantity of edges whose costs are lower than the average of the edges costs
Visines sum of the V' edges of lower values

18

o 4
Basic Approach for AAS SUSTech NI@LVE

= Map instance features to the performance data by regression

> Classification, Learning-to-rank, etc. can also be incorporated

Instance Algorithm
Portfolio P

Compute Instance Based on f(i), Solve Instance ¢
Features f : 7 — R"™ select Algorithm A € P with Algorithm A

m For anew problem instance:

> Extract its features

> Query the model the performance of the algorithms on this new instance

> Apply the best expected algorithm

o 4
Deep Learning for AAS SUSTech NI@:N

|dentifying informative instance features is challenging
> Domain expertise is required
> Feature engineering/selection is generally necessary

> More importantly, it needs to be done for every problem domain

Deep learning could help address this issue — still in early research stage
> Convert instance text files into images (ASCII code intro greyscale) [Loreggia et al., 2016]
> Use visual representations of TSP instances, e.g., minimum spanning tree [Seiler et al., 2020]

> CTAS [Zhao et al., 2021]: Convert the 2-D coordinates of TSP instances into images

||||||||||||

20

CTAS—TSP Instance to Image

s 2D coordinates to density map

2D coordinate Grided density map

s Safe data augmentation

Vertical flip Horizontal flip

g
SUSTech NI@:AR

Interpolation enhancement

Rotation

21

CTAS—Data Preparation

6,000 TSP instances, belonging to six different types
> rue, explosion, implosion, expansion, cluster, grid

Six TSP solvers: EAX, EAXr, LKH, LKHr, LKHc, MAOS

4

TABLE I: Solver performance statistics over the instances. 10 inatadhdl B st dhdy ndd il i
TSP set | Measure EAX EAXr LKH LKHr LKHc MAOS | VBS
Unique 188 153 204 127 223 8T [1000
s Shared 2 2 21 9 16 0 0 10° o .. m
Failed 254 1 11 10 9 6 0 AP
PARIO 229848 3692 14347 13471 12628 95.62 | 14.85 = RRITAE-A TR %
Unique 220 162 233 99 215 48 | 1000 n 0o . .°:‘v ot, %
explosion | Shared 4 4 17 3 18 0 0 a SRR R
Failed 194 1 5 3 3 5 0 < 10 o size
PARIO 1758.07 30.14 84.72 66.89 6573 7750 | 12.72 ° SR 00
Unique 215 152 238 106 199 49 | 1000 £ % 1000
siplGEGH Shared 6 6 31 6 33 0 0 z o | 1500
Failed 193 1 10 10 11 4 0 =
PARIO 1748.04 2971 12943 129.29 13770 71.89 | 12.60 ERTY * | 2000
Unique 299 214 10 9 3 451 | 1000 E instance_type
expansion | Shared 8 8 0 1 1 0 0 e RUE
Failed 507 42 316 318 319 11 0 « explosion
PARIO 4569.26 43291 3001.87 3019.59 302638 123.02 | 19.67 s implosion
Unique 239 101 184 33 177 90 | 1000 0 o | cluster
cluster Shancd 5 5 2t 9 2 0 0 10 & expansion
Failed 246 1 54 55 53 7 0 :
PARI0 2225.21 3435 546.62 555.76 541.13 100.63 | 14.51 4 gid
Unique 189 127 242 93 278 44 | 1000 0 1 2 3
. Shared 4 4 20 5 21 0 0 10 - 10 10 10
grid Failed 234 i 15 13 14 34 0 running time of VBS (s)
PARIO 211778 4378 17767 160.81 168.64 364.00 | 15.28
Unique 1350 999 111 517 1100 763 | 6000
Shared 30 30 113 33 116 0 0
Total Failed 1628 47 411 409 409 67 0 SBS (EAXF) VS. VBS
PARIO 245281 10130 680.63 677.84 677.64 138.78 | 14.94

running time of SBS (s)

SUSTech NI@:Vm

Southern University of Science and Technology

10 GHPH6 6 6 456 666 4010 416 ®

—_
o
w
&
*
*

size
500
1000

e 1500

e 2000
instance type
RUE

—
(e}
(S)

H
O_.

°
explosion
= implosion
+ cluster

& cexpansion
A grid

10" 10' 107 10° 10*

running time of MAOS (s)

SBS(EAXr) vs.
2" best solver(MAQOS)

22

CTAS—Experiment Results

TABLE IV: The test performance of CTAS and the baselines.

Selector Characteristics Performance
Learn. Model Feat. Set / PAR10 Avg. Impro. Notwo.
Stra. #Used Feat. (s) Rank (%) (%)
Reg. DT Pihera /4 41.01 3.08 7.50 91.17
Reg. RF UBC-cheap /8 58.39 3.05 14.89 85.22
Reg. SVM Pihera /3 68.47 3.00 16.72 85.28
Cla. DT Pihera /2 145.66 2.95 51.33 51.35
Cla. SVM UBC /11 164.64 2.90 53.22 53.22
Cla. SVM UBC-cheap /6 | 392.47 302 50.67 50.67
P-Reg. SVM UBC-cheap /5 | 118.35 3.00 49.56 49.56
P-Reg. SVM UBC /17 135.38 2.96 50.61 50.61
P-Reg. DT Pihera /2 147.05 4.28 17.83 1%:83
Reg. MLP union /336 52.87 207 7.06 88.89
Cla. MLP union /336 57.66 2.12 722 90.67
Cla. 8-layer CNN - 111.03 1.92 32.00 50.50
Reg. ResNet18 - 38.23 2.30 7.70 80.17
Reg. ResNet34 - 36.89 1.92 18.56 86.83
Cla. ResNet18 - 40.91 Z.11 6.70 92.09
Cla. ResNet34 - 45.93 2.04 8.17 03.83
- SBS - 97.02 2.09 0.00 100.00
- VBS - 13.90 1.00 86.10 100.00

SUSTech NI@:Vm

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

= CTAS achieves 2x speedup
compared with SBS

» Regression is better then
classification and pairwise

regression

23

o 4
Literature on AAS SUSTech NI@:N

Southern University of Science and Technology

[Kotthoff, 2016] http://larskotthoff.github.io/assurvey/

Comments? Suggestions? Algorlthm SeleCtion Literature Summary click headings to sort

Corrections? click citations to expand

Let me know!
Last update 10 July 2019
T " : : predict :
citation domain features predict what predict how when portfolio yeart
Mantovani et al. 2019 machine instance algorithm classification offline static 2019
learning features
Loera et al. 2019 optimization instance algorithm neural offline static 2019
networks
Abdulrahman et al. 2019 machine instance algorithm ranking offline static 2019
learning features
Wang et al. 2018 CSP instance algorithm decision tree offline static 2018
features
Tripoul et al. 2018 pattern simulation constraint hand-crafted online static 2018
matching model
Silva et al. 2018 games instance algorithm logistic online dynamic 2018
features regression
Pavelski et al. 2018a, Pavelski flowshop instance algorithm decision trees, offline static 2018
et al. 2018b features gradient
boosting
Nikoli¢ et al. 2018 theorem instance algorithm, classification, offline static 2018
proving features runtime regression
performance
Kerschke et al. 2018 TSP instance algorithm classification, offline static 2018
features regression

24

. /s
Try it yourself! SUSTech NIl@/:\E

s State-of-the-art algorithm selection libraries are freely available online
(www.coseal.net/algorithm-selection)

Tools

COSEAL
e SATzilla COnfiguration and SElection of ALgorithms
e AutoFolio
* ISAC HOME ORGANISATION EVENTS ALGORITHM CONFIGURATION ALGORITHM SELECTION RELATED SHOP (EXTERNAL)
e SNNAP
e claspfolio
* borg

e Cp-hydra (sourcecode)

= You can try them for your problems
> features for SAT, MIP, Al planning and TSP are available
> Yyou need to provide features for other problem domains

> in many cases, the general ideas behind the features apply 25

http://www.coseal.net/algorithm-selection

Outline

= Introduction to Learning to Optimize (L20)
s Research Directions in L20

= Automatic Algorithm Selection

= Automatic Algorithm Configuration

= Neural Combinatorial Optimization

= Summary

SUSTech NI@:Vm

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

26

. . . . /
Automatic Algorithm Configuration SUSTech NI@LVE

Sufficient Data
Data Collection —<
Few-shots/Cold-start
Supervision Signal Supervised Learning
Search Algorithms (e.g., EAs)
/- Learning Algorithm

Reward Signal Bayesian Optimization

Learn to Optimize

Exact/Heuristic/Meta-heuristic Solvers
Neural Networks
Solver

Hybrid Solvers

Reinforcement Learning

Algorithm Portfolios

The solver’s performance heavily depends on its parameter configuration, how to identify the

best configuration, or even to build a more powerful solver based on it? 27

Automatic Algorithm Configuration (AAC)

Algorithm A and
Instances [its Configura-
l tion Space C
________________________ | ——

Returns Best
Configuration c*

|

; [Select ¢ € C Assess /}(C) on .
' some I C [

Return Performance

~ Configuration Task

P
SUSTech NI@:\N

28

Automatic Algorithm Configuration (AAC) SUSTech NI

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

= How to select candidate configurations to evaluate?

> Experimental design [Adenso-Diaz and Laguna, 2006] [Coy et al., 2001]
> Heuristic/Meta-heuristic search [Hutter et al., 2009] [Ansétegui et al., 2009][Smit and Eiben, 2010]

> Bayesian (model-based) optimization methods [Hutter et al., 2011] [Ansétegui et al., 2015]

= How to evaluate candidate configurations with limited computational budget?

> Split the budget as evenly as possible to all training problem instances [Birattari et al., 2007]

[Liu et al., 2020]

29

Automatic Algorithm Configuration (AAC) SUSTech NI

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

= AAC is a well studied area and is still in fast development

= Materials on AAC

> Recent surveys: [Huang et al.,, 2019] [Stutzle and Lopez-lbanez, 2019] [Eryoldas and
Durmusoglu, 2021] [Schede et al., 2022]

> Open-sourced Benchmarks: ACIlib (https://bitbucket.org/mlindauer/aclib2), and DAC
(https://github.com/automl/DAC)

> Open-sourced AAC tools: GPS [Pushak and Hoos, 2020], irace [Lopez-Ibanez et al., 2016],
ParamlILS [Hutter et al., 2009], SMAC [Hutter et al., 2011], GGA [Ansétegui et al., 2009], REVEC
[Smit and Eiben, 2010]

= This tutorial focuses on a particular variant of AAC—Automatic Construction of
Parallel Algorithm Portfolios

30

https://github.com/automl/DAC

. . /
Parallel Algorithm Portfolios (PAPs) SUSTech NIG:R

= Run all component algorithms in parallel

s For decision problem, e.g., SAT “-JE-JH-J“-J“-J

> Once an algorithm terminates, all are killed (») ()

> runtime = min{ty, t, ..., t;;}

w N = O

= For optimization problem, e.g., TSP
> algorithms terminate when time exhausted
> cost =min{cy,cy, ..., Ccp}

Algorithm terminates,
all other are killed. Y
t

= Features
> Always achieve the best performance among the algorithms

31

Why PAPs?

= Main advantages of PAPs
> High-performance: by definition, “all” cannot be worse than “many”
> Generality: applicable to nearly all kinds of computation problems

> Easy to implement: friendly to modern computing facilities

= PAPs have shown promising performances in many areas, e.g.,

> Boolean Satisfiability Problem (SAT) [Lindauer et al., 2017]
> Classical/Satisficing/Agile Planning [Seipp et al., 2015]
> Black-box Numerical Optimization [Tang et al., 2014]

P
SUSTech NI@:\N

32

Automatic Construction of PAPs

SUSTech NI@:Vm

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

= Automatically Identify algorithms (configurations) in PAPs

Algorithm Configuration
Space (ACS) 0 |

training

PAP = {64,6,, ..., 0}}

» ACS: a joint parameter space of multiple base algorithms

Two base algorithms DE and PSO
DE with one parameter x)
PSO with one parameter z

S=0 2 5= 1 '
ZFTIT] pace slgorithme as you
/\ 1/\2 want!
1 2
DE PSO

33

g
The PAP Construction Problem SUSTech NI@:\E

Goal: Find the optimal PAP w.r.t metric m and target instance set I*

= argminm(@,.,, ")
‘91:k€@k

%k
1:k

!

: performance indicator Target problem
PAP = 6,, = {60,,...,0,} :P° 95t P
1 = 01, -0, O} (runtime, solution quality) instance set

!

Approximated by
a training set I

34

Main Research Questions

= |f | is sufficient

» How to identify a good set of algorithm configurations (i.e., PAP)?

= |f] is insufficient

» How to construct a PAP that can still generalize well?

g
SUSTech NI@:\N

35

Training PAPs with Sufficient Data

= GLOBAL [Lindauer et al., 2017]

> Treat the construction of PAPs as an algorithm configuration problem

> configures all component solvers simultaneously

> full configuration space size |0|*, increases exponentially with k

0 €O
0 €O

—

0 €O

search output

PAP =
- AAC Tool ‘{91, 0, ..., 0}

P
SUSTech NI@:\N

36

Training PAPs with Sufficient Data

= PARHYDRA [Lindauer et al., 2017]

> An iterative method that configures b component solvers at each step
> When b = k, PARHYDRA=GLOBAL

> b T limited scalability; b | : tend to stuck in local optimum

6 €O

6 e

geS

search

—

search

—

search

—

%

\

AAC Tool

~N

B

&

.

AAC Tool

.

J

[AAC Tool J

output
PAP =
{61}
output
PAP =
{61' 92}

output

PAP =
) 0.0, ...,60,)

P
SUSTech NI@:\N

37

Training PAPs with Sufficient Data

s CLUSTERING [Kadioglu et al., 2010]

>

Split training set I into k disjoint subsets, based on
the distances in feature space

Configure a component solver on each subset
The most informative features and the best

normalization strategies are unknown in advance

search

-
-

search

-
=

search

—

-

P
SUSTech NI@:\N

output
AAC Tool ‘ 61 1

output
AAC Tool ‘ 6

output
AAC Tool ‘ Ok -

PAP =
(64,0, ..., 0}

38

.. . . . /
Training PAPs with Sufficient Data SUSTech NI@LVE

If the training set could be appropriately “clustered”, k solvers could be tuned separately

=
@@@0@ @@@@@

But how to cluster training instances without tedious problem-specific feature engineering?

A problem-independent approach: using algorithm behavior data as instance feature

gt WP T . e N TN AN
el) CASY CAZY: (CAS) " ("

Ay AZ \A?/ oL A2/ \[3/ Al/ o2/ \A3/

i h 5 ™ £ T

I . R S (> ! . U ;

& . W YR % | P ¥ Evolve to find one’s niche
¥ 3 J J hY \ ¥ : ’ : g A Y ¥ § ¥ / : bt~ A \
S1 S2 53 S4 @ S1 S2 S3 S4 @ 51 S2 S3 S4 @

39

/
PCIT SUSTech NIOEA

» Parallel Configuration via explicit instance grouping (PCIT) [Liu et al., 2019]

Training Instances @

@ @ Grouping
O

:) —> Configuration 1

= Configuration 2

Instance Configuration Performance Problem feature (optional)

Insufficient Training Data

g
SUSTech NI@:\N

» What if we don’t have enough training instances?

» Suppose a solver for combinatorial optimization problem is to be learned

Problem No. of
Instance
TSP 143 http://elib.zib.de/pub/mp-

testdata/tsp/tsplib/tsplib.html

CVRP 319 http://vrp.atd-lab.inf.puc-
rio.br/index.php/en/

VRPSPDTW 85 https://github.com/senshineL/

VRPenstein

Indeed, benchmark set is small

Runlength (median, 10% & 90% quantiles)

-
o
Cl

Overfitting may also occurs'

—test 25
= = =train »
15
;—“‘__..._——-— !
“
\ V.
L J os p
g /
- 5] ¥ ;
[
0.5
-1
o
5
- = i 2 -1 o 1
10 10 10 Vi

Randomly generated instances are biased

. Source !: https://www.cs.ubc.ca/~hoos/PbO/Tutorials/IJCAI-16

" Source 2 K. Smith-Miles, and B. Simon, “Generating new test instances by evolving in instance space.” Computers & Operations Research 2015 (63): 102-113.

41

Intelligently Generating More Instances

= Given a training set I, to generate a set I of additional instances

m(P, I*) — m(P, I*) : =

Z m(P, z) —

261

Z m(P,

ze]

g
SUSTech NI@:\N

z)

II*I

Zm(P z)+2m(P Z) +

zel /\

zel

Zm(P z)+2m(P Z) +

zel

zel

Z m(P, z))

zeIl*\(1ul) A

Z m(P, z))

zeI*\(1Ul)

>Vz €1*, m(P,z) < m(P,z) holds when P c P

»Thus

m(P, I*) —m(P, I*) <

I|1*I

zel

Zm(P Z) — Zm(P z)

zel

Computable Upper-bound of the improvement on generalization

42

g
Competitive Game SUSTech NIW:AR

" |[terative two-step procedure to minimize the upper bound [Liu et al., 2020]

a) Generate I to maximize },,.;m(P, z) — find hard instances for current PAP

b) Train P with I U I to minimize };,.;m(P, z) — improve PAP on new instances

Optimize the PAP using the current
training set

Augment the training set with new
instances that are hard for PAP

'S. Liu, K. Tang and X. Yao, “Generative Adversarial Construction of Parallel Portfolios,” IEEE Transactions on
' Cybernetics, 2022, 52(2): 784-795. | "

rd
CEPS: Co-evolving PAPs and Training Instances ~ 3USTech NI®AA

= A co-evolutionary framework to construct generalizable PAP [Tang et al., 2021]
» Two competitive populations PAP and I
» Conflicting objectives: minimize Y, ,.;m(P, z) and maximize ,,.;m(P, z)

* Widely applicable to nearly all problems and algorithms

» Need to design mutation and crossover operators to handle @ and I*

» Available at https://github.com/senshineL/CEPS

[Evo!ve I to generate hard } ' [Evolve PAP to better solve I }

instances for PAP ¢ I

K Tang, S. Liu, P. Yang and X. Yao, "Few-shots parallel algorithm portfolio construction via co-evolution." IEEE
Transactlons on Evolutionary Computation, 2021, 25(3): 595-607. : 44

SUSTech NI@:Vm

Souther University of Science and Technology

Experiment Results

Training time < 7 days, with 40core Intel Xeon machines with 128 GB RAM (2.20 GHz, 30 MB Cache)

SAT_PAPIY

TSP_PAPI2] VRPSPDTW_PAP!3!

Competitive to SOTA New best solution

Significantly outperform SOTA

Instance Type #instances #better #not-worse

Agile Track Parallel Track #TOs PAR-10(s) ADR(%o0) Rdp 23 i 22

#TOs PAR-10(s) #TOs PAR-10(s) TSP_PAP | i/ 2369.38 0.02 | Cdp 17 9 9

SAT PAP | 181 119 35 1164 | LKH 50 14242 .85 0.56 RCdp 16 16 16

Priss6 225 146 - - EAX 16 4928.88 0.24 count 56 44 47
PfolioUZK . . 36 1185 LKH-TUNED 43 12319.73 0.51

Plingeling-bbc 452 276 33 1090 EAX-TUNED 14 4364.25 0.16 BKS: Best Known Solutions by September 2020

EAX LKH 9 2921.51 0.12

Priss6: SAT’16 Competition (Agile Track) Winner

PfolioUZK: SAT’12 Competition (Parallel Track) Winner
Plingeling-bbc: SAT’16 Competition (Parallel Track) Winner

LKH, EAX: Best TSP solvers so far

LKH/EAX-TUNED: LKH & EAX with further finetuning
EAX LKH: PAP consisted with LKH & EAX

Cost
Solver

Rdp103

Rdp206 Cdpl08 RCdpl02

RCdp105

VRPSPDTW_PAP
Co-GA

p-SA

ALNS-PR

2594.64
2616.16
2626.77
2597.01

1206.14
1261.32
1259.94
1213.68

1932.49
1951.24
2063.73
1932.88

2770.28
2897.05
2822.76
2783.62

2946.36
2981.26
2981.54
2948.96

[1] S. Liu, K. Tang and X. Yao, “Automatic Construction of Parallel Portfolios via Explicit Instance Grouping,” AAA/ 2019

[2] S. Liu, P. Yang, K. Tang. Approximately optimal construction of parallel algorithm portfolios by evolutionary intelligence (in Chinese). Sci Sin Tech, 2022

[3] K. Tang, S. Liu, P. Yang and X. Yao, “Few-shots Parallel Algorithm Portfolio Construction via Co-evolution,” IEEE Transactions on Evolutionary Computation,
2021, 25(3): 595-607. 45

Outline

= Introduction to Learning to Optimize (L20)
s Research Directions in L20

= Automatic Algorithm Selection

= Automatic Algorithm Configuration

= Neural Combinatorial Optimization

= Summary

SUSTech NI@:Vm

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

46

Neural Combinatorial Optimization

Data Collection <
l— Learning Algorithm

Learn to Optimize

Sufficient Data

Few-shots/Cold-start

Supervision Signal

P
SUSTech NI@:\N

Reward Signal

Exact/Heuristic/Meta-heuristic Solvers
Neural Networks
Solver

Hybrid Solvers

Algorithm Portfolios

Supervised Learning
Search Algorithms (e.g., EAs)
Bayesian Optimization

Reinforcement Learning

How to build an effective solver in a unified framework that is applicable to a wide range of problems?

47

Neural Combinatorial Optimization (NCO) SUSTech NI@:m

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

» Deep learning (DL) has achieved huge success over the past decade
» Huge amount of training data and massively parallel computing platforms (GPUs)

» Replacing hand-crafted features by features learned from data

» Can DL be used to learn heuristics (solvers) for optimization problems?

* The last five years have seen the emergence of such promising techniques

» This tutorial focuses on combinatorial optimization (NCO)

48

Neural Combinatorial Optimization (NCO) SUSTech NI@:m

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

» Many CO problems are similar to Translation in Natural Language Processing
» mapping from a set (sequence) to a sequence
* The seminal work—Pointer Networks (Ptr-Net) for solving TSP [Vinyals et al., 2015]

» Use RNNs to encode the cities and decode the node sequence of the tour sequentially

» Trained by supervised learning with approximately optimal TSP solutions

v ¥ ¥ v
I____t____j' ______ S t — I____“ _____ L __________________ I
PR)
! A P —" B i::T -------- T . ' T i
i H H H H i ; F;{ N [w s, H i
T Encoder J T Decoder J

49

Learning Constructive Heuristics

g
SUSTech NI@:\N

= Attention Model (AM) [Kool et al., 2018] improves based upon Ptr-Net

» Attention-based Encoder learns the embedding of each node and the problem instance

» Attention-based Decoder decodes the sequence

» Training the solvers with Reinforcement Learning

O Node embedding Q
O Graph embedding Concatenation

N) N (N) N) N :
/ hig) v, V. 1_1<1) h; l.‘g l.’i) r- (N)

O

Context node embedding Learned input symbol

Output probability

Message

v Attention query

~ ©® © © ©)

MEA T % o

VG
f'rqj

N N

'y)

r

i'

Nx

< (

FF \‘2;‘)
K=%(‘ + + @)

/

Compatibility

+Identity / reference

@59 @ Qe
" s e NHEE

Q 1@ O Q O

v 3 v 5 v

K £) Decodert = 1 J

J
kq(c)

Decodert = 4

NES

50

. . . L. /
Learning Constructive Heuristics SUSTech NIWAR

= POMO [Kwon et al., 2020] improves based upon AM
» Leverages multiple trajectories in parallel rather than the single one in AM

» Uses data augmentation (during inference/solving stage)

1
G T
- ke
N N
o

policy | | || policy [1 policy |[_ .. __,| policy policy | _ policy | _ . .| policy
network network network \n/et‘work network network _n/et:vork

< START >

51

o o o 4
Learning Improvement Heuristics SUSTech NIW:AN

1 IR 3 [.+« [EEH 6 1 |[ENEsR eS| s 1 [3 [.+« [EEH -6
St |St Ist |5r |5t Ist | St Ist Ist ISt Ist |St | St Ist |5t |5t |5t |5c l x(s‘)x(s’)

[Linear Projection]

swap(se, (s¢, 5¢)) 2-0pt(Se, (¢, 5¢)) relocate(sy, (¢, 5¢)) .
st [sf [s? [st [s#[se | st [sP s [s? [s2]s? | st [s?[s? [sF [s2]s¢ | — [y []t |
1

-

-1

1
(_,[Linear Projection]

Self-Attention Layer] & Summation

s N
Summation &]')

* LIH [Wu et al., 2021] combines DL with traditional L [conpaiiy Loy
h hy !
move operators Fl*l = e
ully-connected Layer 7
> Learns a policy to pick node pair to perform 2-opt/local (S V
swap operators) '

| [H
> The pOIICy IS a tranS.fO rmer-based mOdel’ tralned by Fig. 2. Architecture of policy network (left: node embedding; right: node
reinforcement learning pai sclection).

» Later, LIH was improved in [Ma et al. 2021], dubbed DACT

52

° ® g
Learning Hybrid Solvers SUSTech NI@:\N

[TSPinstance | Naoroia T Agaii r Original LKH Algorithm
‘ v y Repeat for K Trials [TSP Instance]
Sparse Node Embeddlngs Edge Embeddmgs *
Directed O3 SlatiEncoder Randorm o Subgradient
o i e
Graph G % \\\\ Node Decoder Edge Decoder Inialietion [Optimization]‘ ‘
ez x| |
‘»:_',»" ----- PR »: While|not Convergence
O‘ :, LKH Searching ‘
[\ : Process for prewrs :
R Node Penalnes Edge Scores Spanning Tree
. <0 ; P)
Y RN /) Transform Create Edge While not _[Create Edge] [Transform] :
5 = - : : :
(@S <o O A 4 [Edge Dlstance Candidate Set Convergence Candidate Set Edge Distance) :
| ; S

Figure 1: NeuroLKH algorithm and the original LKH algorithm.
* NeuroLKH [Xin et al., 2021] combines DL with the well-known LKH solver for TSP

» Learns a Sparse Graph Network (SGN) for edge scores to create edge candidate set for LKH

» The network is trained by supervised learning with optimal solutions

53

A Comparative Study on TSP SUSTech NI

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

* Benchmark Instances
» Random uniform instances (rue)
» “Clustered” instances (clust)

» 1,000,000 instances for training, 10,000 instances for testing

» Competitors—the best NCO approaches and traditional solvers
» POMO (learning constructive heuristic)
» DACT (learning improvement heuristic)

» NeuroLKH (learning hybrid solver)
» LKH [Helsgaun, 2017], EAX [Nagata and Kobayashi, 2013], and their tuned variants

54

A Comparative Study on TSP SUSTech NI

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

» Performance Metrics (the smaller the values are, the better)
» Solution quality, measured by the gap between the found solution and the optimal solution
» Wall-clock runtime

» Consumed energy

» Experiment Environment
» NVIDIA TITAN RTX GPU (24 GB video memory) for DNN-based solvers

» Xeon Gold 6240 CPU (2.60 GHz, 24.75 MB Cache) for traditional solvers (running in parallel
with 32 CPU threads)

55

Southern University of Science and Technology

o /
Experiment Results on Small-scale Instances SUSTech NIGLE

TABLE 1
Testing results of experiment 1 which is designed to assess the effectiveness, efficiency and stability of the solvers on small-size problem
instances. The results are presented in terms of the average optimum gap, the total computation time and energy consumed by the solver. For
each metric, the best performance is indicated in grey. Note for DACT with instance augmentation mechanism, its results on rue-100 and clust-100
are missing because it runs prohibitively long to solve the testing instances.

Mithod rue-50 clust-50 rue-100 clust-100
etho

Gap (%) £std (%) Time(s) Energy(J) Gap (%) +£std (%) Time(s) Energy(J) Gap (%) +std(%) Time(s) Energy(J) Gap (%) = std (%) Time (s) Energy (J)
POMO, no aug. 0.1185 4+ 0.0000 257 290.83 0.1353 + 0.0000 2.58 292.14 0.3646 + 0.0000 12.59 2588.90 0.4318 4 0.0000 12.83 2675.18
POMO, x8 aug. 0.0228 + 0.0000 16.98 3361.87 0.0213 = 0.0000 17.04 4193.39 0.1278 4 0.0000 87.73 25873.38 0.1405 =+ 0.0000 93.08 27299.18
DACT 0.0167 + 0.0291 1991.49 402635.40 0.1770 £+ 0.1117 1921.99 393994.52 0.6596 + 0.5216 6141.72 1269009.13 1.2220 + 0.4773 6517.2110 1390740.24
DACT, x4 aug. 0.0006 + 0.0013 8534.42 1742933.29 0.0576 + 0.0390 8735.50 1676140.80 - -
NeuroLKH 0.0003 =+ 0.0003 34.22 4006.11 0.0004 + 0.0007 131.92 12698.78 0.0004 =+ 0.0005 74.90 9819.77 0.0021 £ 0.0031 309.75 29397.05
LKH 0.0035 + 0.0035 291.22 10458.70 0.0022 £ 0.0018 257.95 9512.24 0.0044 =+ 0.0048 313.73 12868.38 0.0048 + 0.0040 340.58 14264.64
EAX 0.0000 == 0.0000 343.79 15089.39 0.0000 == 0.0000 321.06 12541.47 0.0000 =+ 0.0000 598.34 35145.37 0.0000 £ 0.0000 561.41 27893.49

rue-50 clust-50 rue-100 clust-100
5.0% ”

4.0%

3.0% [

?Zill“l iliLl Eﬁ$$+i_._ NN

0.0%
5 5 %
Qo‘fl‘o o"‘o* OPC« Obé* ‘009}‘ \349 @?’* o"‘O 0V1\0+ OP»C‘* ‘odx\ \}9}‘ “o"’* o O @O* o 0»‘@‘\ NS Qo o ov‘@ N ?»?’*
9 e e e e

Optimity gap

TSP solvers

» Traditional solvers consistently obtain better solutions

» POMO exhibits excellent efficiency in terms of both runtime and energy

56

Experiment Results on Medium-scale Instances

TABLE 2
Testing results of experiment 2 which is designed to assess the effectiveness, efficiency and stability of the solvers on large-size problem
instances. The results are presented in terms of the average optimum gap, the total computation time and energy consumed by the solver. For
each metric, the best performance is indicated in grey. Note in this experiment POMO and DACT are not tested due to their poor scalability.

g
SUSTech NI@-N

Science and Technology

il rue-500 clust-500 rue-1000 clust-1000
etho
Gap (%oo) £ std (Yooo) Time (s) Energy (J) Gap (%oo) & std (%eoo)) Time (s) Energy (J) Gap (%oo) £ std (Yooo) Time (s) Energy (J) Gap (%oo) & std (%eoo)) Time (s) Energy ()
NeuroLKH 0.0273 + 0.0441 242.71 21455.69 1.8080 + 2.5469 2695.06 171826.14 0.0417 + 0.0510 728.41 58569.96 1.8599 + 2.2236 5094.77 334771.95
LKH 0.4356 + 0.5084 143.36 17077.63 4.2779 + 3.6307 313.80 35213.13 0.3620 + 0.3624 413.43 48867.49 1.8761 + 1.2798 859.39 100514.45
LKH (tuned) 0.0086 + 0.0165 162.63 19087.78 0.0345 + 0.0398 279.80 32685.72 0.1732 + 0.1770 406.16 52252.97 0.0460 + 0.0537 522.41 66511.40
EAX 0.0140 + 0.0291 269.41 32370.64 0.0006 + 0.0012 209.09 24456.69 0.0182 + 0.0242 620.30 75168.05 0.0086 + 0.0122 631.68 75222.30
rue-500 rue-1000 clust-500 clust-1000
0;0800/0 l i 500/0 -
1.25%

0.060% [
o : 1.00% ;
50 . i y
2 0040% [i : . 0.75% | .
'S : : 0.50% - .
& ooowt | . — | : 5 : i

: l)) : ! : 0.25% i F : :
0.000% F AL J— i L J— _L AL 0.00% F 45 _JL L .!L gL R S— R A
S D P G e o o
W W N\ ¥ N W N W

TSP solvers

» NeuroLKH can improve LKH in solution quality, but needs to consume much more runtime and energy

» Automatic Algorithm Configuration can improve LKH in solution quality, runtime and energy

57

o o /s
On Generalization over Instance Types SUSTech NI@EN

rue-100 clust-100 rue-1000 clust-1000
15.0% F : 1.00% F :
12.5% - 0.80% |-
g, 100%F I 0.60% -
b0 ! : ’
7.5% i
'E\ . 0.400/0 B B
£ s0% : : ;
a i : . :
O 2s5%b . ’_‘"_' " % L l ! 0.20% I
P i = . = ; ; ; C | ooonp o e o o i D —L Jﬁ' ;'
3 X S Q) 0) X Sal &) &)) X) o) Q) X) o))) A X))
¢ »° s N s 5o R = @‘ St ¢ & N & @ @& (o
o GO O T st T 8 O ot et NN RN RN RN e \33\ S 28
< A Y A4 < Q RS & 559 &5° e o°
$e \Aeo $ $e W ée
TSP solvers

» The performance of a learned solver would be degraded over different problem types

» Even if a mixed training set is used, the learned/trained solver still cannot achieve the best

possible performance
58

° . . /
On Generalization over Instance Sizes SUSTech NI@:R

TABLE 3
Testing results of experiment 4 which is designed to assess the learned
solvers’ generalization ability over different problem sizes. The results
are presented in terms of the average optimum gap.

Method rue-100 Method clust-100
(training set) Gap (%) +std (%) | (trainingset) Gap (%) + std (%)
POMO (rue50) 0.6703+ 0.0000 | POMO (clust-50) 0.6829 = 0.0000

POMO (rue-100) 0.1278 £ 0.0000 | POMO (clust-100) 0.1405 + 0.0000
DACT (rue-50) 27.5437 + 31.4449 | DACT (clust-50) 21.4630 £ 5.3292
DACT (rue-100) 0.6596 = 0.5216 | DACT (clust-100) 1.2220 + 0.4773

» when applying the solvers learned by POMO and DACT on the testing instances having

larger sizes than the training instances, the performance would be significantly degraded

59

o 4
Materials on NCO SUSTech NIW:\R

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

* NCO is a rapidly evolving area that absorbs ideas from both DL and CO

[1] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. “Machine Learning for Combinatorial Optimization: A
Methodological Tour d’horizon.” 2020

[2] Natalia Vesselinova, Rebecca Steinert, Daniel F. Perez-Ramirez, and Magnus Boman. “Learning Combinatorial
Optimization on Graphs: A Survey With Applications to Networking. ” 2020

[3] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. “Reinforcement Learning for Combinatorial
Optimization: A survey.” 2021

[4] Quentin Cappart, Didier Chetelat, Elias B. Khalil, Andrea Lodi, Christopher Morris, Petar Velickovic, “Combinatorial
Optimization and Reasoning with Graph Neural Networks.” 2021

[5] James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck and Bryan Wilder, “End-to-End Constrained Optimization
Learning: A Survey.” 2021

[6] Jiayi Zhang, Chang Liu, Junchi Yan, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, “A Survey for Solving Mixed Integer
Programming via Machine Learning.” 2022

60

Outline

= Introduction to Learning to Optimize (L20)
s Research Directions in L20

= Automatic Algorithm Selection

= Automatic Algorithm Configuration

= Neural Combinatorial Optimization

= Summary

SUSTech NI@:Vm

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

61

/
Summary SUSTech NIW@:\N

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

» |20 represents a shift in algorithm/solver design paradigm, from human-centered
paradigm to learning centered

» |20 is able to improve traditional solvers in both effectiveness and efficiency

» L20 can be implemented in many different ways
» Learning a selector that always selects the best algorithm
» Learning an algorithm configuration (or a set of configurations) with strong performance

» Learning a constructive/improvement heuristic

62

/
Summary SUSTech NIW@:\N

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

» |20 has been successfully applied to may problems over the past years

AAS SAT, MIP, PLANNING, VRP, CSP, QBF, BBO,GAMES...
AAC ‘ SAT, SMT, ASP, PLANNING, MIP, VRP, Protein Folding...
NCO VRP, BPP, OP, EDA, MIP, IM, JSSP, QAP, MCS, SAT...

= Future Directions
» Effective combination of different L20 frameworks
» Convenient integration of domain knowledge into L20

» More complex real-word problems with no effective solutions

Thanks!
Comments/Questions are most welcome!

63

g
References SUSTech NIW@:N

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

[1] Huberman, Bernardo A., Rajan M. Lukose, and Tad Hogg. "An economics approach to hard computational problems." Science 275.5296 (1997): 51-54.

[2] Loreggia, Andrea, et al. "Deep learning for algorithm portfolios." Thirtieth AAAI Conference on Artificial Intelligence. 2016.

[3] Kerschke, Pascal, et al. "Leveraging TSP solver complementarity through machine learning." Evolutionary computation 26.4 (2018): 597-620.

[4] Zhao, Kangfei, et al. “Towards Feature-free TSP Solver Selection: A Deep Learning Approach.” 2021 IJCNN. IEEE, 2021.

[5] Kotthoff, Lars. "Algorithm selection for combinatorial search problems: A survey." Data mining and constraint programming. Springer, Cham, 2016. 149-
190.

[6] Adenso-Diaz, Belarmino, and Manuel Laguna. "Fine-tuning of algorithms using fractional experimental designs and local search." Operations research 54,
no. 1 (2006): 99-114.

[7] Coy, Steven P., Bruce L. Golden, George C. Runger, and Edward A. Wasil. "Using experimental design to find effective parameter settings for heuristics."
Journal of Heuristics 7, no. 1 (2001): 77-97.

[8] Hutter, Frank, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stiitzle. "ParamILS: an automatic algorithm configuration framework." Journal of
Artificial Intelligence Research 36 (2009): 267-306.

[9] Ansotegui, Carlos, Meinolf Sellmann, and Kevin Tierney. "A gender-based genetic algorithm for the automatic configuration of algorithms." In
International Conference on Principles and Practice of Constraint Programming, pp. 142-157. Springer, Berlin, Heidelberg, 2009.

[10] Smit, Selmar K., and Agoston E. Eiben. "Beating the ‘world champion’evolutionary algorithm via REVAC tuning." In Evolutionary Computation (CEC),
2010 IEEE Congress on, pp. 1-8. IEEE, 2010.

[11] Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown. "Sequential model-based optimization for general algorithm configuration." In International

Conference on Learning and Intelligent Optimization, pp. 507-523. Springer, Berlin, Heidelberg, 2011. o4

/
References SUSTech NI@VE

Souther University of Science and Technolo

[12] Ansoétegui, Carlos, Yuri Malitsky, Horst Samulowitz, Meinolf Sellmann, and Kevin Tierney. "Model-Based Genetic Algorithms for Algorithm
Configuration." In IJCAI, pp. 733- 739. 2015.

[13] Birattari, Mauro. The Problem of Tuning Metaheuristics as Seen from a Machine Learning Perspective. Ph.D. Dissertation, Universit'e Libre de
Bruxelles, Brussels, Belgium. 2004.

[14] Liu, Shengcai, et al. "On performance estimation in automatic algorithm configuration." Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 34. No. 03. 2020.

[15] Changwu Huang, Yuanxiang Li, and Xin Yao. A survey of automatic parameter tuning methods for metaheuristics. IEEE transactions on evolutionary
computation, 24(2):201-216, 2019.

[16] Thomas St'utzle and Manuel L’opez-Ib’a™nez. Automated design of metaheuristic algorithms. In Michel Gendreau and Jean-Yves Potvin, editors,
Handbook of Metaheuristics, volume 272 of International Series in Operations Research & Management Science, pages 541-579. Springer, 2019. doi:
10.1007/978-3-319-91086-4 17.

[17] Yasemin Eryolda,s and Alptekin Durmu,so™glu. A literature survey on instance specific algorithm configuration methods. In Proceedings of the 11th
Annual International Conference on Industrial Engineering and Operations Management, pages 2983-2990. IEOM Society International, 2021.

[18] Schede, Elias, et al. "A Survey of Methods for Automated Algorithm Configuration." arXiv preprint arXiv:2202.01651 (2022).

[19] Yasha Pushak and Holger H. Hoos. Golden parameter search: exploiting structure to quickly configure parameters in parallel. In Genetic and
Evolutionary Computation Conference, GECCO, pages 245-253. ACM, 2020.

[20] Manuel L opez-Ib‘anez, J er’emie Dubois-Lacoste, P’erez C’aceres Leslie, Mauro Birattari, and Thomas Stutzle. The irace package: Iterated racing for

automatic algorithm configuration. Operations Research Perspectives, 3:43-58, 2016. 03

/
References SUSTech NI@VE

Souther University of Science and Technolo

[21] Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "Pointer networks." Advances in neural information processing systems 28 (2015).

[22] M. Seiler, J. Pohl, J. Bossek, P. Kerschke, and H. Trautmann. Deep Learning as a Competitive Feature-Free Approach for Automated Al- gorithm
Selection on the Traveling Salesperson Problem. In Proc. of PPSN’2020.

[23] Kadioglu, Serdar, et al. "ISAC—instance-specific algorithm configuration." ECAI 2010. IOS Press, 2010. 751-756.

[24] Lindauer, Marius, et al. "Automatic construction of parallel portfolios via algorithm configuration." Artificial Intelligence 244 (2017): 272-290.

[25] Tang, Ke, et al. "Population-based algorithm portfolios with automated constituent algorithms selection." Information Sciences 279 (2014): 94-104.

[26] S. Liu, K. Tang and X. Yao, “Automatic Construction of Parallel Portfolios via Explicit Instance Grouping,” AAAI 2019

[27] Kool, Wouter, Herke Van Hoof, and Max Welling. "Attention, learn to solve routing problems!." arXiv preprint arXiv:1803.08475 (2018).

[28] Kwon, Yeong-Dae, et al. "Pomo: Policy optimization with multiple optima for reinforcement learning." Advances in Neural Information Processing
Systems 33 (2020): 21188-21198.

[29] Wu, Yaoxin, et al. "Learning improvement heuristics for solving routing problems.." IEEE transactions on neural networks and learning systems (2021).
[30] Ma, Yining, et al. "Learning to iteratively solve routing problems with dual-aspect collaborative transformer." Advances in Neural Information
Processing Systems 34 (2021): 11096-11107.

[31] Xin, Liang, et al. "NeuroLKH: Combining deep learning model with lin-kernighan-helsgaun heuristic for solving the traveling salesman

problem." Advances in Neural Information Processing Systems 34 (2021): 7472-7483.

66

