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Optimization

n It concerns finding the best solutions that maximize (or minimize) some criterion

n For optimization, the performances in terms of two aspects are often of interest
Ø Effectiveness, e.g., solution quality

Ø Efficiency, e.g., runtime, number of fitness evaluations

maximize   f (x)
subject to: gi (x) ≤ 0,   i =1...m
                 hj (x) = 0,   j =1...p
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What is Learning to Optimize (L2O)

n Learning concerns improving performance with the accumulation of experience

n Generally, L2O leverages learning to train solvers for the problems of interest
Ø The learning (training) phase is conducted offline

Ø The learned solver will be deployed in production/application

Problem
Instances solver Application

Offline training Online inference (solving)

Learning Deployment
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L2O vs. Classic Optimization

n Traditionally,
Ø Experts hand-build algorithms/solvers based on theory/experience

Ø Practitioners pick a solver to use

n L2O
Ø Experts propose L2O frameworks and training procedures

Ø Practitioners pick a L2O framework, prepare training data, and apply the training procedure

to obtain a solver to use
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L2O vs. Classic Optimization

n Classic
Ø Human centered

Ø Heavily depends on domain expertise

Ø Expensive in human time

n L2O
Ø Learning centered

Ø Requires much less domain knowledge

Ø Expensive in computation time
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L2O vs. Classic Optimization

Computing is getting cheaper and cheaper

7

One dollar’s worth of computer power, measured in MIPS (left) and FLOPS (right)

Source: https://aiimpacts.org/trends-in-the-cost-of-computing



Key Research Questions in L2O

Learning

Parameterized
Solvers

Training Data Collection
!Learn from what"

Learned Solvers
!What to learn"

Learning Algorithm
(How to learn)
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A Taxonomy of L2O
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Research Directions in L2O

n This tutorial covers several widely studied directions in L2O
Ø Automatic Algorithm Selection (AAS)

Ø Automatic Algorithm Configuration (AAC)

Ø Neural Combinatorial Optimization (NCO)

n Appropriate for handling different practical situations
Ø AAS — there exist several powerful solvers for the problem, how to get the best of them?

Ø AAC — the solver’s performance heavily depends on its parameter configuration, how to

identify the best configuration, or even to build a more powerful solver based on it?

Ø NCO — how to build an effective solver in a unified framework that is applicable to a wide

range of problems?
10



Quick Recap of TSP

n We use the well-known traveling salesman problem (TSP) as an example

Ø One of the most representative optimization problem

Ø Comprehensive empirical results available

Ø Ideas presented in the tutorial also apply to other optimization problems

n TSP concerns finding the shortest Hamilton cycle on a complete graph

Ø NP-hard, exhaustive search has a complexity of 𝑂(𝑛!)

11



Traditional Solvers for TSP

EAX[8]

[8] Nagata, Yuichi, and Shigenobu Kobayashi. A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem. 2013

12Source: https://www.ipam.ucla.edu/programs/workshops/deep-learning-and-combinatorial-optimization/
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Automatic Algorithm Selection

14

There exist several powerful solvers for the problem, how to get the best of them?



Automatic Algorithm Selection (AAS)

n AAS seeks to train an algorithm selector that chooses the best algorithm for a

given problem instance

n It generally requires
Ø An algorithm portfolio

Ø A set of training instances

Ø A set of instance features (unnecessary for deep learning-based approach)

Ø Instance × Algorithm performance data
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Algorithm Portfolios

n Comes from economics [Huberman et al., 1997]

n A portfolio of financial assets (e.g., stocks)
Ø maximize profit and minimize risk

n A portfolio of algorithms
Ø no “universal best” algorithm

Ø the best algorithm is priori unknown

Ø maximize overall performance
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Instance × Algorithm Performance Data

17
A. Puris, R. Bello, F. Herrera, “Analysis of the Efficacy of a Two-Stage Methodology for Ant Colony Optimization: Case of Study with TSP
and QAP,” Expert Systems with Applications 37(7) 



Problem Features

n 100+ TSP manually designed features are now available [Kerschke et al., 2018]
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Basic Approach for AAS

n Map instance features to the performance data by regression
Ø Classification, Learning-to-rank, etc. can also be incorporated

n For a new problem instance:

Ø Extract its features

Ø Query the model the performance of the algorithms on this new instance

Ø Apply the best expected algorithm

19



Deep Learning for AAS

n Identifying informative instance features is challenging
Ø Domain expertise is required

Ø Feature engineering/selection is generally necessary

Ø More importantly, it needs to be done for every problem domain

n Deep learning could help address this issue — still in early research stage
Ø Convert instance text files into images (ASCII code intro greyscale) [Loreggia et al., 2016]

Ø Use visual representations of TSP instances, e.g., minimum spanning tree [Seiler et al., 2020]

Ø CTAS [Zhao et al., 2021]: Convert the 2-D coordinates of TSP instances into images
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CTAS—TSP Instance to Image 

n 2D coordinates to density map

2D coordinate Grided density map Interpola4on enhancement 

n Safe data augmentation

Vertical flip Horizontal flip Rotation
21



CTAS—Data Preparation

n 6,000 TSP instances, belonging to six different types
Ø rue, explosion, implosion, expansion, cluster, grid 

n Six TSP solvers: EAX, EAXr, LKH, LKHr, LKHc, MAOS
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CTAS—Experiment Results

§ CTAS achieves 2× speedup 

compared with SBS

§ Regression is better then 

classification and pairwise 

regression
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Literature on AAS

[Kotthoff, 2016] http://larskotthoff.github.io/assurvey/
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n State-of-the-art algorithm selection libraries are freely available online
(www.coseal.net/algorithm-selec=on)

n You can try them for your problems
Ø features for SAT, MIP, AI planning and TSP are available

Ø you need to provide features for other problem domains

Ø in many cases, the general ideas behind the features apply

Try it yourself!

25
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Automatic Algorithm Configuration

27

The solver’s performance heavily depends on its parameter configuration, how to identify the

best configuration, or even to build a more powerful solver based on it?



Automatic Algorithm Configuration (AAC)

28
Source: https://www.coseal.net/algorithm-configuration/



Automatic Algorithm Configuration (AAC)

n How to select candidate configurations to evaluate?
Ø Experimental design [Adenso-Diaz and Laguna, 2006] [Coy et al., 2001]

Ø Heuristic/Meta-heuristic search [Hutter et al., 2009] [Ansótegui et al., 2009][Smit and Eiben, 2010]

Ø Bayesian (model-based) optimization methods [Hutter et al., 2011] [Ansótegui et al., 2015]

n How to evaluate candidate configurations with limited computational budget?
Ø Split the budget as evenly as possible to all training problem instances [Birattari et al., 2007]

[Liu et al., 2020]
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n AAC is a well studied area and is still in fast development

n Materials on AAC
Ø Recent surveys: [Huang et al., 2019] [Stutzle and Lopez-Ibanez, 2019] [Eryoldas and

Durmusoglu, 2021] [Schede et al., 2022]

Ø Open-sourced Benchmarks: AClib (https://bitbucket.org/mlindauer/aclib2), and DAC

(https://github.com/automl/DAC)

Ø Open-sourced AAC tools: GPS [Pushak and Hoos, 2020], irace [Lopez-Ibanez et al., 2016],

ParamILS [Hutter et al., 2009], SMAC [Hutter et al., 2011], GGA [Ansótegui et al., 2009], REVEC

[Smit and Eiben, 2010]

n This tutorial focuses on a particular variant of AAC—Automatic Construction of

Parallel Algorithm Portfolios

Automatic Algorithm Configuration (AAC)
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Parallel Algorithm Portfolios (PAPs)

n Run all component algorithms in parallel

n For decision problem, e.g., SAT
Ø Once an algorithm terminates, all are killed

Ø runtime = min{𝑡!, 𝑡", … , 𝑡#}

n For optimization problem, e.g., TSP
Ø algorithms terminate when time exhausted

Ø cost = min{𝑐!, 𝑐", … , 𝑐#}

n Features
Ø Always achieve the best performance among the algorithms
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Why PAPs?

n Main advantages of PAPs
Ø High-performance: by definition, “all” cannot be worse than “many”

Ø Generality: applicable to nearly all kinds of computation problems

Ø Easy to implement: friendly to modern computing facilities

n PAPs have shown promising performances in many areas, e.g., 
Ø Boolean Satisfiability Problem (SAT) [Lindauer et al., 2017]

Ø Classical/Satisficing/Agile Planning [Seipp et al., 2015]

Ø Black-box Numerical Optimization [Tang et al., 2014]

32



Automatic Construction of PAPs

§ Automatically Identify algorithms (configurations) in PAPs

§ ACS: a joint parameter space of multiple base algorithms

training

Algorithm Configuration 
Space (ACS) Θ PAP = {𝜃!, 𝜃", … , 𝜃$}

Two base algorithms DE and PSO
DE with one parameter 𝑥

PSO with one parameter 𝑧
1 2

𝑥 𝑧

1 2

𝑆 = 0 𝑆 = 1
𝑆

DE PSO

It can involve as many
base algorithms as you

want!
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Goal: Find the optimal PAP w.r.t metric 𝑚 and target instance set 𝐼∗

The PAP Construction Problem

PAP = 𝜃0:2 = {𝜃0, … , 𝜃2}
m: performance indicator 
(runtime, solution quality)

Target problem 
instance set

Approximated by 
a training set 𝐼
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Main Research Questions

§ If 𝐼 is sufficient

ØHow to identify a good set of algorithm configurations (i.e., PAP)?

§ If 𝐼 is insufficient

ØHow to construct a PAP that can still generalize well?
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n GLOBAL [Lindauer et al., 2017]
Ø Treat the construction of PAPs as an algorithm configuration problem

Ø configures all component solvers simultaneously

Ø full configuration space size Θ $, increases exponentially with 𝑘

Training PAPs with Sufficient Data
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n PARHYDRA [Lindauer et al., 2017]
Ø An iterative method that configures 𝑏 component solvers at each step

Ø When 𝑏 = 𝑘, PARHYDRA=GLOBAL

Ø 𝑏 ↑： limited scalability; 𝑏 ↓：tend to stuck in local optimum

Training PAPs with Sufficient Data
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n CLUSTERING [Kadioglu et al., 2010]
Ø Split training set 𝐼 into 𝑘 disjoint subsets, based on

the distances in feature space

Ø Configure a component solver on each subset

Ø The most informative features and the best

normalization strategies are unknown in advance

Training PAPs with Sufficient Data
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n If the training set could be appropriately “clustered”, 𝑘 solvers could be tuned separately

n But how to cluster training instances without tedious problem-specific feature engineering?

n A problem-independent approach: using algorithm behavior data as instance feature

Training PAPs with Sufficient Data

Evolve to find one’s niche
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PCIT

§ Parallel Configuration via explicit instance grouping (PCIT) [Liu et al., 2019]

Grouping

Configuration 1

Configuration 2

Training Instances

Instance Configuration Performance Problem feature (optional)

… … … …

… … … …

… … … …

S. Liu, K. Tang and X. Yao, “Automatic Construction of Parallel Portfolios via Explicit Instance Grouping,” AAAI 2019
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Insufficient Training Data

§ What if we don’t have enough training instances?

Ø Suppose a solver for combinatorial optimization problem is to be learned 

41

Source 1: https://www.cs.ubc.ca/~hoos/PbO/Tutorials/IJCAI-16
Source 2: K. Smith-Miles, and B. Simon, “Generating new test instances by evolving in instance space.” Computers & Operations Research 2015 (63): 102-113.
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Intelligently Generating More Instances

§Given a training set 𝐼, to generate a set ̅𝐼 of additional instances

Ø∀𝑧 ∈ 𝐼∗, m .𝑃, 𝑧 ≤ 𝑚(𝑃, 𝑧) holds when P ⊂ .𝑃

ØThus 

Computable Upper-bound of the improvement on generalization
42



Competitive Game

§ Iterative two-step procedure to minimize the upper bound [Liu et al., 2020]

a) Generate ̅𝐼 to maximize ∑%∈ ̅(𝑚(𝑃, 𝑧) — find hard instances for current PAP

b) Train >𝑃 with 𝐼 ∪ ̅𝐼 to minimize ∑%∈ ̅(𝑚( >𝑃, 𝑧) — improve PAP on new instances

Optimize the PAP using the current 
training set

Augment the training set with new 
instances that are hard for PAP

S. Liu, K. Tang and X. Yao, “Generative Adversarial Construction of Parallel Portfolios,” IEEE Transactions on
Cybernetics, 2022, 52(2): 784-795. 43



CEPS: Co-evolving PAPs and Training Instances

§ A co-evolutionary framework to construct generalizable PAP [Tang et al., 2021]

ØTwo competitive populations PAP and 𝐼

ØConflicting objectives: minimize ∑%∈ ̅(𝑚( >𝑃, 𝑧) and maximize ∑%∈ ̅(𝑚(𝑃, 𝑧)

§ Widely applicable to nearly all problems and algorithms

ØNeed to design mutation and crossover operators to handle 𝛩 and 𝐼∗

ØAvailable at https://github.com/senshineL/CEPS

K. Tang, S. Liu, P. Yang and X. Yao, "Few-shots parallel algorithm portfolio construction via co-evolution." IEEE
Transactions on Evolutionary Computation, 2021, 25(3): 595-607.

Evolve 𝐼 to generate hard 
instances for 𝑃𝐴𝑃 Evolve 𝑃𝐴𝑃 to better solve 𝐼
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[1] S. Liu, K. Tang and X. Yao, “Automatic Construction of Parallel Portfolios via Explicit Instance Grouping,” AAAI 2019

[2] S. Liu, P. Yang, K. Tang. Approximately optimal construction of parallel algorithm portfolios by evolutionary intelligence (in Chinese). Sci Sin Tech, 2022

[3] K. Tang, S. Liu, P. Yang and X. Yao, “Few-shots Parallel Algorithm Portfolio Construction via Co-evolution,” IEEE Transactions on Evolutionary Computation,

2021, 25(3): 595-607.

Experiment Results

SAT_PAP[1] TSP_PAP[2] VRPSPDTW_PAP[3]

Competitive to SOTA Significantly outperform SOTA New best solution

Priss6：SAT’16 Competition (Agile Track) Winner

PfolioUZK：SAT’12 Competition (Parallel Track) Winner

Plingeling-bbc：SAT’16 Competition (Parallel Track) Winner

LKH, EAX：Best TSP solvers so far

LKH/EAX-TUNED：LKH & EAX with further finetuning

EAX_LKH：PAP consisted with LKH & EAX

BKS：Best Known Solutions by September 2020

Training time < 7 days, with 40core Intel Xeon machines with 128 GB RAM (2.20 GHz, 30 MB Cache)

45



Outline

n Introduction to Learning to Optimize (L2O)

n Research Directions in L2O

n Automatic Algorithm Selection

n Automatic Algorithm Configuration

n Neural Combinatorial Optimization

n Summary

46



Neural Combinatorial Optimization

47
How to build an effective solver in a unified framework that is applicable to a wide range of problems?



Neural Combinatorial Optimization (NCO)

§ Deep learning (DL) has achieved huge success over the past decade
ØHuge amount of training data and massively parallel computing platforms (GPUs)

ØReplacing hand-crafted features by features learned from data

§ Can DL be used to learn heuristics (solvers) for optimization problems?

§ The last five years have seen the emergence of such promising techniques

§ This tutorial focuses on combinatorial optimization (NCO)
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Neural Combinatorial Optimization (NCO)

§ Many CO problems are similar to Translation in Natural Language Processing
Ø mapping from a set (sequence) to a sequence

§ The seminal work—Pointer Networks (Ptr-Net) for solving TSP [Vinyals et al., 2015]
Ø Use RNNs to encode the cities and decode the node sequence of the tour sequentially

Ø Trained by supervised learning with approximately optimal TSP solutions 
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Learning Constructive Heuristics

§ Attention Model (AM) [Kool et al., 2018] improves based upon Ptr-Net
ØAttention-based Encoder learns the embedding of each node and the problem instance

ØAttention-based Decoder decodes the sequence

ØTraining the solvers with Reinforcement Learning

50



Learning Constructive Heuristics

§ POMO [Kwon et al., 2020] improves based upon AM
ØLeverages multiple trajectories in parallel rather than the single one in AM

ØUses data augmentation (during inference/solving stage)
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§ LIH [Wu et al., 2021] combines DL with traditional
move operators
ØLearns a policy to pick node pair to perform 2-opt/local 

swap operators

ØThe policy is a transformer-based model, trained by
reinforcement learning

ØLater, LIH was improved in [Ma et al. 2021], dubbed DACT

Learning Improvement Heuristics
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Learning Hybrid Solvers

§ NeuroLKH [Xin et al., 2021] combines DL with the well-known LKH solver for TSP
ØLearns a Sparse Graph Network (SGN) for edge scores to create edge candidate set for LKH

ØThe network is trained by supervised learning with optimal solutions

53



A Comparative Study on TSP

§ Benchmark Instances
ØRandom uniform instances (rue)

Ø “Clustered” instances (clust)

Ø1,000,000 instances for training, 10,000 instances for testing

§ Competitors—the best NCO approaches and traditional solvers
ØPOMO (learning constructive heuristic)

ØDACT (learning improvement heuristic)

ØNeuroLKH (learning hybrid solver)

ØLKH [Helsgaun, 2017], EAX [Nagata and Kobayashi, 2013], and their tuned variants
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A Comparative Study on TSP

§ Performance Metrics (the smaller the values are, the better)
ØSolution quality, measured by the gap between the found solution and the optimal solution

ØWall-clock runtime

ØConsumed energy

§ Experiment Environment
ØNVIDIA TITAN RTX GPU (24 GB video memory) for DNN-based solvers

ØXeon Gold 6240 CPU (2.60 GHz, 24.75 MB Cache) for traditional solvers (running in parallel
with 32 CPU threads)
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Experiment Results on Small-scale Instances

Ø Traditional solvers consistently obtain better solutions

Ø POMO exhibits excellent efficiency in terms of both runtime and energy
56



Experiment Results on Medium-scale Instances

Ø NeuroLKH can improve LKH in solution quality, but needs to consume much more runtime and energy

Ø Automatic Algorithm Configuration can improve LKH in solution quality, runtime and energy
57



On Generalization over Instance Types

Ø The performance of a learned solver would be degraded over different problem types

Ø Even if a mixed training set is used, the learned/trained solver still cannot achieve the best 

possible performance 
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On Generalization over Instance Sizes

Ø when applying the solvers learned by POMO and DACT on the testing instances having 

larger sizes than the training instances, the performance would be significantly degraded 
59



Materials on NCO

§ NCO is a rapidly evolving area that absorbs ideas from both DL and CO

60

[1] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. “Machine Learning for Combinatorial Optimization: A
Methodological Tour d’horizon.” 2020
[2] Natalia Vesselinova, Rebecca Steinert, Daniel F. Perez-Ramirez, and Magnus Boman. “Learning Combinatorial
Optimization on Graphs: A Survey With Applications to Networking. ” 2020
[3] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. “Reinforcement Learning for Combinatorial 
Optimization: A survey.” 2021
[4] Quentin Cappart, Didier Chetelat, Elias B. Khalil, Andrea Lodi, Christopher Morris, Petar Velickovic, “Combinatorial 
Optimization and Reasoning with Graph Neural Networks.” 2021
[5] James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck and Bryan Wilder, “End-to-End Constrained Optimization 
Learning: A Survey.” 2021
[6] Jiayi Zhang, Chang Liu, Junchi Yan, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, “A Survey for Solving Mixed Integer 
Programming via Machine Learning.” 2022



Outline

n Introduction to Learning to Optimize (L2O)

n Research Directions in L2O

n Automatic Algorithm Selection

n Automatic Algorithm Configuration

n Neural Combinatorial Optimization

n Summary

61



Summary

§ L2O represents a shift in algorithm/solver design paradigm, from human-centered
paradigm to learning centered

§ L2O is able to improve traditional solvers in both effectiveness and efficiency

§ L2O can be implemented in many different ways
ØLearning a selector that always selects the best algorithm

ØLearning an algorithm configuration (or a set of configurations) with strong performance

ØLearning a constructive/improvement heuristic
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Summary

Thanks! 
Comments/Questions are most welcome!

63

§ L2O has been successfully applied to may problems over the past years

§ Future Directions
ØEffective combination of different L2O frameworks

ØConvenient integration of domain knowledge into L2O

ØMore complex real-word problems with no effective solutions

AAS SAT, MIP, PLANNING, VRP, CSP, QBF, BBO,GAMES…
AAC SAT, SMT, ASP, PLANNING, MIP, VRP, Protein Folding…
NCO VRP, BPP, OP, EDA, MIP, IM, JSSP, QAP, MCS, SAT…
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