|
Shengcai LIU (刘晟材)助理教授,博导
Office: Room 311, South Tower, College of Engineering |
|
I received my B.Sc. and Ph.D. degrees in the School of Computer Science and Technology from USTC in 2014 and 2020, respectively, advised by Prof. Xin Yao and Prof. Ke Tang. From Jan 2021 to Jan 2023, I was a Research Assistant Professor at the CSE Department of SUSTech. From Jan 2023 to May 2024, I was a Visiting Professor, and later a senior scientist, at CFAR, A*STAR, Singapore, in collaboration with Prof. Yew-Soon Ong from NTU. I am also a member of the Nature Inspired Computation and Applications Laboratory (NICAL) led by Prof. Xin Yao and Prof. Ke Tang.
刘晟材博士,分别在2014年和2020年于中国科学技术大学计算机学院获得学士和博士学位。曾在新加坡科技研究局担任高级研究科学家,现任南方科技大学计算机科学与工程系助理教授、博导,北京中关村学院兼职导师。长期从事学习优化 (Learn to optimize)、智能优化基座大模型、AI for Material等方向的研究。已获批主持国自然基金一项、华为合作项目两项,迄今已在NeurIPS、ICML、AAAI等CCF-A类会议以及IEEE TEVC、IEEE TCYB等智能优化旗舰期刊上以一作/通讯作者身份发表论文20余篇。刘博士曾多次受邀在国际学术会议上做大会报告,包括达格施图尔城堡研讨会2023、IEEE世界计算智能大会2022、以及第七届演化计算与学习研讨会。
Ultimately, I am obsessed with the fully-automated design of optimizers, as well as their applications in high-impact applications. Now I am interested in:
- Learning easy-to-use, general-purpose optimizers for discrete optimization problems
- Learning optimizers for material design
- Learning optimizers for post training of large language models (LLMs)
- LLMs for Optimization
招募: 本课题组常年招收硕士/博士研究生、访问学生、博士后、研究助理教授,不定时招收北京中关村学院-南方科技大学联合培养博士生。 欢迎数理基础扎实、代码能力强的同学申请。申请时请将本人自述、成绩单、个人简历及相关能力发送至邮箱 liusc3 AT sustech.edu.cn 以及 chengy6 AT mail.sustech.edu.cn,邮件主题请注明为 申请人姓名+申请xx职位/xxx年入学博士生/硕士生.
Recruitment: We have open positions for M.Sc./Ph.D. students, Visiting Scholars, Postdocs, and Research Assistant Professors. Candidates with strong backgrounds in mathematics and programming are highly encouraged to apply. To Apply: Please email your CV, transcripts, and personal statement to liusc3 AT sustech.edu.cn and chengy6 AT mail.sustech.edu.cn. Subject Line: Name + Position Applied / Intake Year.
- 多特性弧路径规划问题的求解方法研究, 国家自然科学基金青年科学基金项目(C类), 2026/01-2028/12, PI
- 大模型RL微调的XXX技术, 华为技术有限公司, 2025/10-2026/10, PI
- XXX求解器的自动构建关键方法, 华为技术有限公司, 2021/05-2022/05, PI
Preprints (First/corresponding-authored works listed; See Google Scholar for the complete list.)
Journal Papers
Conference Papers
北京中关村学院兼职导师 (2025-)
IEEE Member (2022-)
“优化算法的自动生成”, 2025湖南人工智能大会-智能系统与优化论坛, 2025年11月22日, 湘潭.
“Some Preliminary Attempts on LLM-Driven Optimization and Optimization for LLMs”, 第4届智能决策论坛, 2025年6月15日, 南京.
“迈向通用离散优化智能体”, 第20次南澳科学会议, 2025年4月27日, 汕头.
“Large Language Models as General-Purpose Evolutionary Optimizers”, 2024 Workshop on Learning-to-Optimize Paradigms in the Era of LLMs, 2024年12月3日, 深圳华为.
“How Good is Neural Combinatorial Optimization?”, Dagstuhl Seminar “Synergizing Theory and Practice of Automated Algorithm Design for Optimization”. Aug 17, 2023. Dagstuhl, Germany.
“Learn to Optimize”, The 2022 IEEE World Congress on Computational Intelligence (WCCI’2022). Jul 18, 2022. [Slides], Online.
“Co-Evolved Parallel Algorithm Portfolios”, 第七届演化计算与学习研讨会 (The 7th Workshop on Evolutionary Computation and Learning, ECOLE’2021), 2021年5月15日, 武汉.
| © Shengcai LIU. Last updated: 2025-12-17.